

Agenda

Welcome: 10am

Framework Changes

Modelling changes

Assumptions & impacts

Conclusion

Q&A

Re-cap and close

Lauren

Christopher

Christopher

Cameron

Cameron

Key Message and actions:

Decisive action is needed within the next two years to deliver the fundamental change required for a fair, affordable, sustainable and secure net zero energy system by 2050.

Actions:

- Accelerate the delivery of whole system infrastructure through a strategic approach to network investment and introduction of planning reforms.
- Deliver market reform, considering electricity, gas, hydrogen and CO₂, to ensure we have energy markets that provide for and work with a reliable and strategically planned energy system.
- Prioritise the use of hydrogen for hard-to-electrify applications. Agree business models and kick-start delivery of the hydrogen and CO₂ transport and storage infrastructure needed for system flexibility.
- Accelerate progress on low carbon heating, including faster rollout of heat pumps irrespective of a decision on hydrogen for heat.

- Deliver innovation and build consumer trust in affordable smart technology, enabling consumers to save on energy costs while helping with the management of Great Britain's electricity system.
- Focus on energy efficiency improvements across all sectors to reduce overall energy demand.
- Expedite the delivery of clean, low-cost and reliable new technologies and long-duration energy storage connected to the system by reforming the connections process.
- Invest in supply chain and skills to deliver the low carbon technologies and infrastructure needed for net zero and enable the UK to become a world leader.

Key Message and actions:

Decisive action is needed within the next two years to deliver the fundamental change required for a fair, affordable, sustainable and secure net zero energy system by 2050.

Actions:

- Accelerate the delivery of whole system infrastructure through a strategic approach to network investment and introduction of planning reforms.
- Deliver market reform, considering electricity, gas, hydrogen and CO₂, to ensure we have markets that provide for and work with a reliable and strategically planned energy system.
- Prioritise the use of hydrogen for hard-to-electrify applications. Agree business models and kick-start delivery of the hydrogen and CO₂ transport and storage infrastructure needed for system flexibility.
- Accelerate progress on low carbon heating, including faster rollout of heat pumps, irrespective of a decision on hydrogen for heat.

- Deliver innovation and build consumer trust in affordable smart technology, enabling consumers to save on energy costs while helping with the management of Great Britain's electricity system.
- Focus on energy efficiency improvements across all sectors to reduce overall energy demand.
- Expedite the delivery of clean, low-cost and reliable new technologies and long-duration energy storage connected to the system by reforming the connections process.
- Invest in supply chain and skills to deliver the low carbon technologies and infrastructure needed, enabling the UK to become a world leader.

Drivers for change

- Need for strategic network investment
- Ofgem decision on Centralised Strategic Network Planning
- Stakeholder feedback

Scenarios

Pathways

Wide range of credible outcomes

Narrower, strategic routes to net zero

Cost agnostic

Brings in additional economic modelling

Interactions between vectors highlighted

Models hydrogen and electricity interactions

Changes to the framework

- Net zero by 2050
- · Mix of electrification and hydrogen
- Very high consumer engagement in the transition

- Net zero by 2050
- High levels of electrification
- Strong consumer engagement in the transition

- Net zero by 2050
- Fast progress for hydrogen in industry and heat
- Lower levels of consumer engagement

- Net zero not achieved by 2050
- Some progress is made compared to today
- Heavy reliance on gas across all sectors, particularly power and space heating
- Electric vehicle uptake is slower than the net zero pathways, but still displaces petrol and diesel

Key changes to modelling in 2024

New "Capacity Expansion Modules" for post-2030 electricity and hydrogen supply capacities

Data centre locations and demand growth reflecting increased expectation

Incorporated new data sources into supply modelling

Improved modelling of hydrogen network rollout for heating

Closer integration of energy supply component interaction

Updated approach to EV charging flexibility

Assumptions

Changes in emissions and bioenergy key assumptions

Non-FES Sector emissions aligned to the Committee on Climate Change's Balanced Pathway DACCS included in all net zero pathways

Updated use of BECCS essential to meeting Sixth Carbon Budget

Changes in energy demand key assumptions

High levels of home energy efficiency in all pathways

Narrowed range on H₂ boiler and heat pump uptake

Battery electric vehicle uptake follows zero emission vehicles mandate

Changes in electricity supply key assumptions

New and more detailed cost and technical input data

Minimum capacity build rates set in modelling

Refreshed European data set for 2024

Changes in gas and hydrogen supply key assumptions

Assumed availability of LNG increased in all pathways

New economic model for hydrogen supply

Industrial demand drives methane reformation

Pathway Ranges

Nuclear

FES 2024 sees an increased use of gas CCS and hydrogen to power for security of supply

Reduced exports, but Great Britain remains net exporter between 15 to 73 TWh in FES 2024

Change in 2050 hydrogen demand and production range

Change in 2050 hydrogen demand and production range

Change in 2050 hydrogen demand and production range

Conclusion

Driving strategic network investment and whole energy markets

A new framework for pathways and improved modelling

Narrowing of the pathway range

Focussed key message and actions

Find out more

The full suite of documents can be found on the Future Energy Scenarios pages of the ESO website:

Your feedback matters - please complete the poll on your screens

Stay in touch:

FES@nationalgrideso.com

nationalgrideso.com/future-energy/future-energy-scenarios

