Scheduling and Dispatch Options Webinar

Wednesday 17 July 2024

Agenda

ltem			Time
Welcome		Lizzie Blaxland (ESO)	13:00 – 13:05
DESNZ Intro		Harry Mayhew (DESNZ)	13:05 – 13:15
ESO Intro		Izzie Sunnucks (ESO)	13:15 – 13:25
Reminder of the case for change		Dan Taylor (ESO)	13:25 – 13:35
Introduction to key concepts	Overview of scheduling & dispatch and dispatch philosophies	Rob Westmancoat (ESO)	13:35 – 13:50
Process for establishing options	Building blocks, counterfactual	Ed Farley (ESO)	13:50 – 14:05
Introducing strawman models			14:05 – 14:10
Coffee Break			14:10 - 14:20
Model 1: Self-scheduling	Presentation & quick clarification questions	Rob Westmancoat (ESO)	14:20 – 14:45
5	Breakout 1		14:45 – 14:55
Coffee Break			14:55 – 15:05
Model 2: Hybrid scheduling	Presentation & quick clarification questions	lzzie Sunnucks (ESO)	15:05 – 15:20
, .	Breakout 2		15:20 – 15:30
Model 3: Central scheduling	Presentation & quick clarification questions	Francisco Celis Andrade (ESO)	15:30 – 15:45
	Breakout 3		15:45 – 15:55
Coffee Break			15:55 – 16:00
Summary			16:00 – 16:05
Q&A			16:05 – 16:30

Housekeeping

- 1. The main meeting will be recorded and published online.
- 2. Breakout groups will not be recorded. But each group will have a scribe making notes of relevant feedback.
- 3. We encourage people to turn on their cameras when in breakouts.
- 4. These notes will operate under Chatham House Rules.
- 5. Q&A
 - Please ask all your questions via the Q&A functionality in the Teams Webinar.
 - No more than 4 questions per organisation to ensure diverse views
 - No anonymous questions.
 - We will answer as many questions as possible today. Some questions might need to be answered later via a publication in our website.

Today's speakers

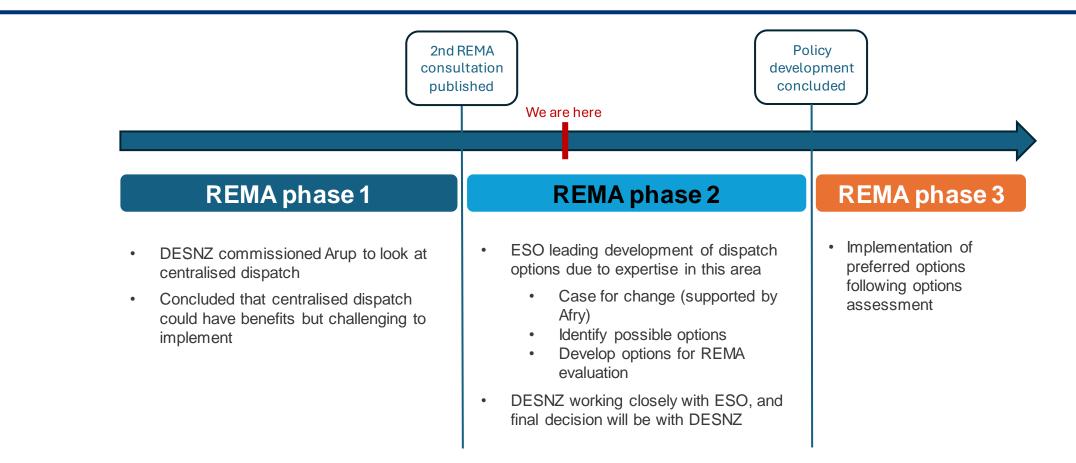
Lizzie Blaxland Head of REMA Market Design

Isabel Sunnucks Dispatch & Balancing Manager

Francisco Celis Andrade Market Strategy Lead

Rob Westmancoat Senior Market Strategy Lead

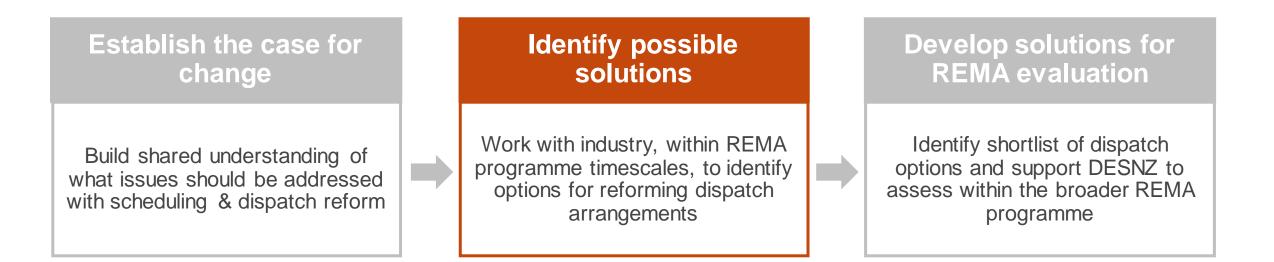
Ed Farley Senior Market Development Lead



Dan Taylor Market Strategy Analyst

DESNZ Intro

Dispatch work across the REMA phases

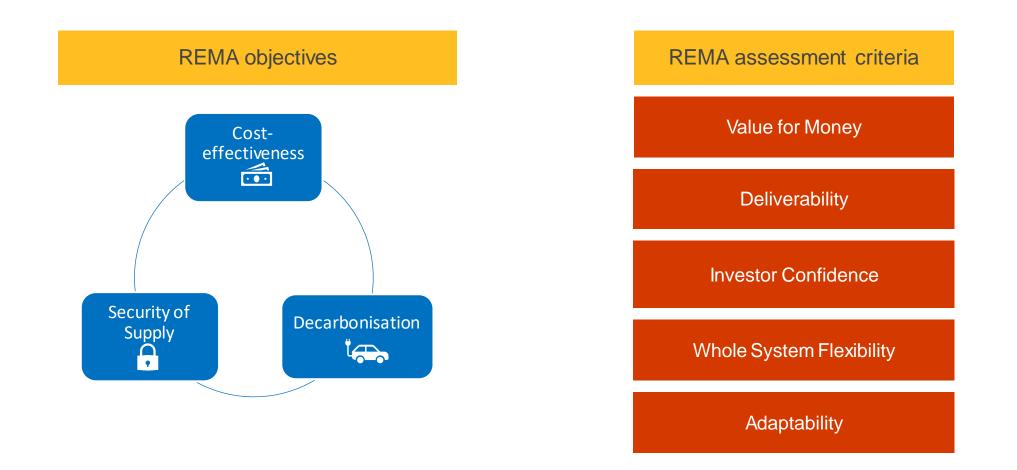


Department for Energy Security & Net Zero

ESO Intro

Introduction

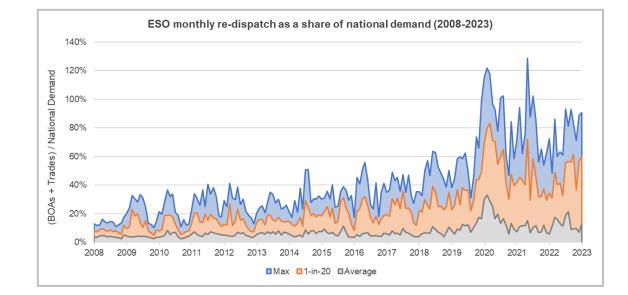
- ESO is supporting DESNZ' REMA Programme by leading the 'Dispatch' workstream.
- This includes assessing self-dispatch (such as options for Balancing Mechanism reform) and central dispatch

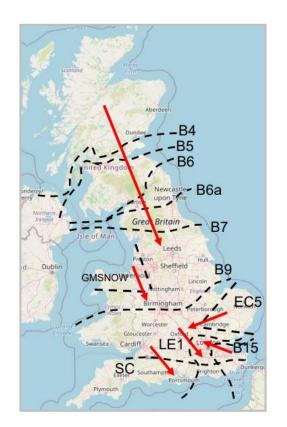

Objectives and Structure of this workshop

Objectives are to:

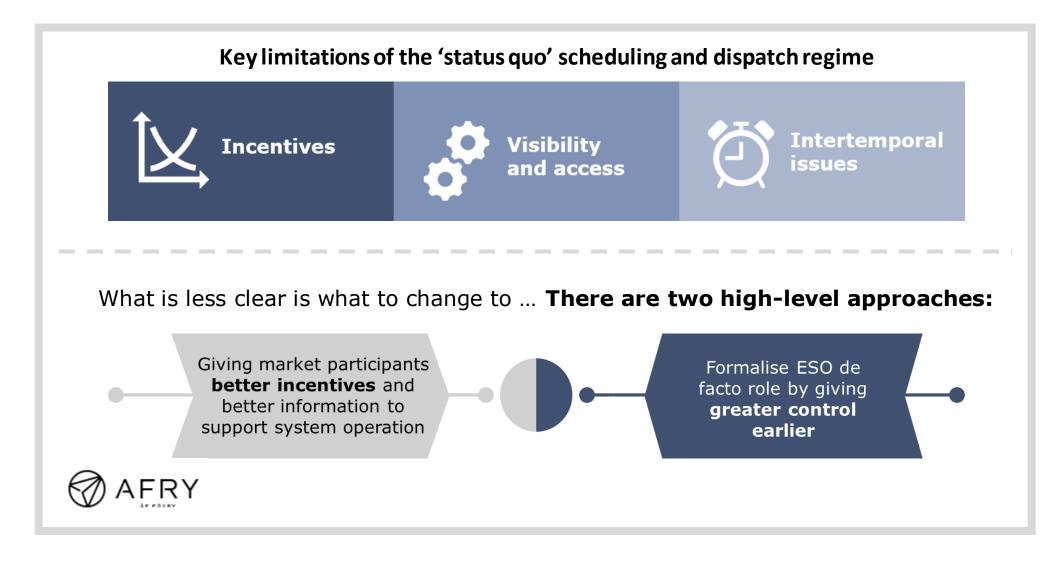
- Provide opportunity to discuss the strawman models and get your input on whether we've identified the right design choices
- Identify the hypothesised pros/cons of each model i.e have we correctly scoped the arguments for and against
- Not to evaluate the different models

Reminder of the 'Case for Change' Introduction to key concepts Process for identifying models Self-scheduling models (3) Hybrid scheduling models (2) Central scheduling models (2) Summary, Q&A

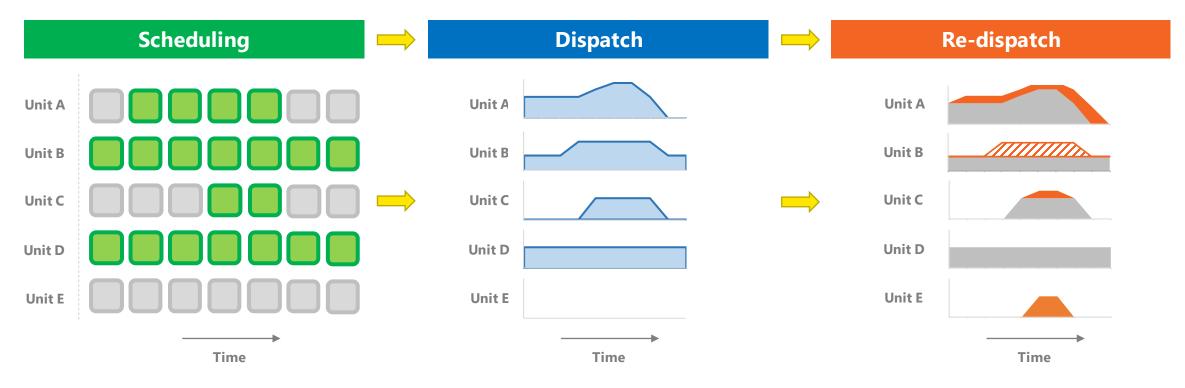

Breakout sessions to discuss each strawman model REMA is aiming to identify and implement the reforms needed to facilitate decarbonisation of the electricity system, while maintaining energy security and affordability for consumers


Reminder of the case for change for scheduling & dispatch

The current GB dispatch arrangements were introduced in a very different market and network context from today


ESO is re-dispatching increasing volumes away from the self-dispatched market position

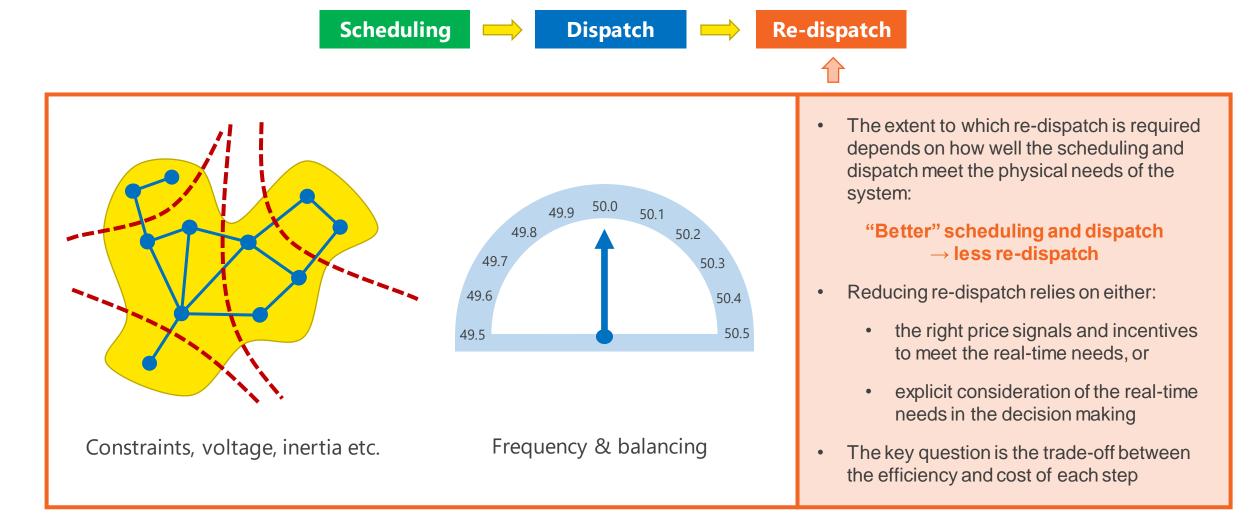
The GB network has multiple bottlenecks which can be active independently or together in different combinations, and can be interdependent with each other



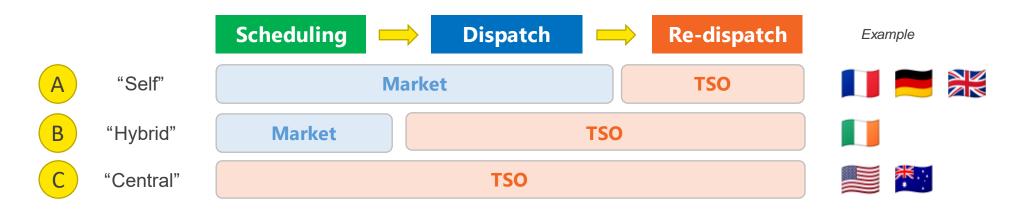
AFRY's 'Case for Change' established 3 underlying issues

Introduction to key concepts

What are 'scheduling' & 'dispatch'?



- Start-up and shut-down decisions about units (especially with longer minimum on / off times)
- Also known as 'Unit Commitment'
- Can start months and years ahead with forward trading, and is refined down to around 4 – 24 hrs ahead


- Decisions about the exact output level and profile of units
- Refined as real-time is approached and more detailed information and forecasts are known

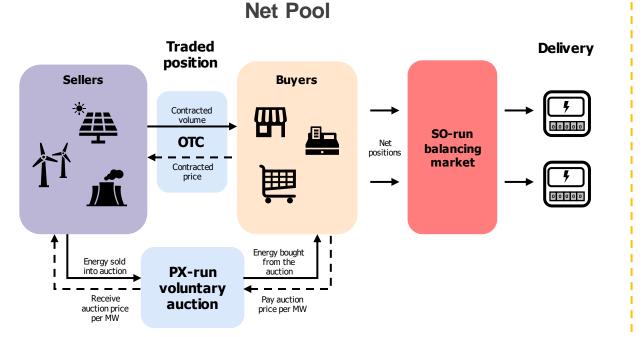
• Changes to the dispatched output near real-time, to ensure the physical needs of the system are met (balancing, constraints, inertia, voltage etc.)

What affects the level of re-dispatch?

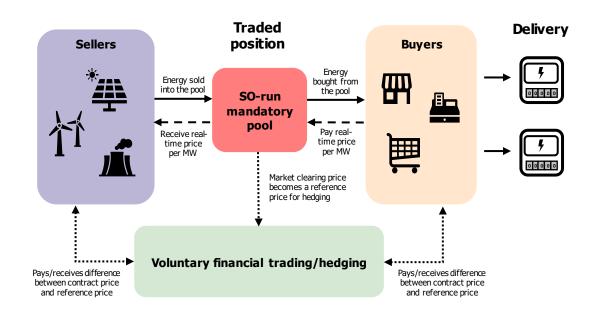
What are the high-level philosophies?

Self

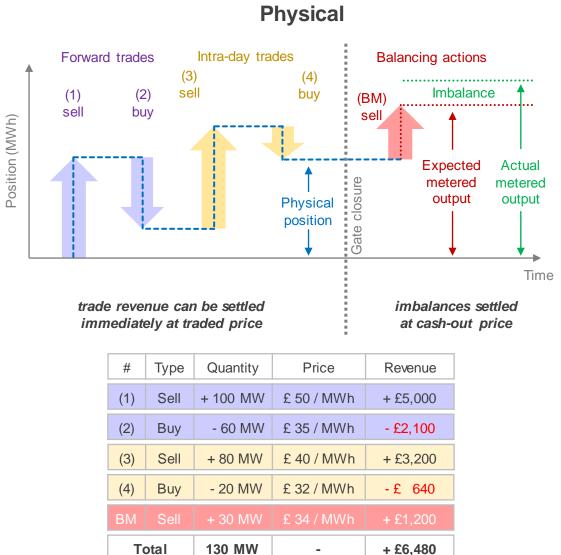
- Market participants can trade with each other, without reference to the TSO
- They set their own schedules and dispatch positions
- The TSO re-dispatches as needed
- Price signals (such as imbalance and locational pricing) can be used to incentivise the scheduling and dispatch to respect the physical needs of the system

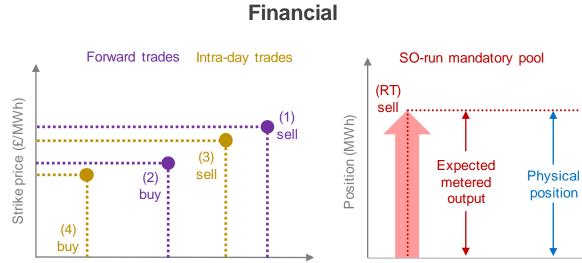

B Hybrid

- Market participants can trade with each other, in a limited way, without reference to the TSO
- Their schedule matches their traded position in the market
- TSO calculates a secure dispatch position starting from the market scheduled position
- Price signals can be used to incentivise scheduling and dispatch that respects system needs


- Market participants transact through a centralised market run by the TSO
- Schedules and dispatch position are decided through a centralised market algorithm
- Minimal re-dispatch is needed, as the previous steps directly reflect the physical needs of the system
- Incentives are focused around units following the dispatch positions

Whether the market is a 'net pool' or a 'gross pool' has significant implications for how market parties trade


- Buyers and sellers can contract directly for the physical delivery of electricity, without reference to a central market
- SO takes re-dispatch actions to make sure delivery meets the physical needs of the system
- Market parties are exposed to 'imbalance' costs for difference between traded and delivered volumes


Gross Pool

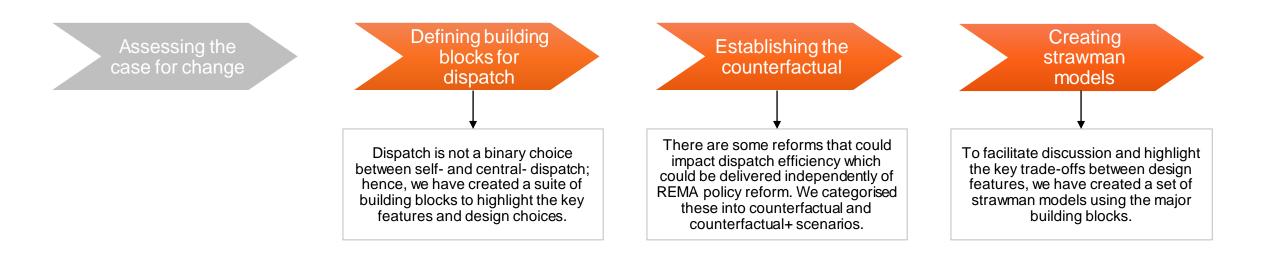
- All physical delivery of electricity is managed through a mandatory 'pool' run by the SO
- For each period, all production and consumption is settled at the real-time price
- Bilateral contracts between market participants can take place ahead of time, but they are typically financial hedges against the real-time price

The models we will discuss also vary in whether forward trading is financial or physical

Financial trades (MWh)

trade revenues settled later, once real-time price is known

#	Туре	Quantity	Strike price	Real-time price	Revenue
(1)	Sell	+ 100 MW	£50/MWh	£ 34 / MWh	+ £1,600
(2)	Buy	- 60 MW	£35/MWh	£ 34 / MWh	-£ 60
(3)	Sell	+ 80 MW	£40/MWh	£ 34 / MWh	+£ 480
(4)	Buy	- 20 MW	£30/MWh	£ 34 / MWh	-£ 80
RT	Sell	+ 130 MW		£ 34 / MWh	+£4,420
Т	otal	130 MW	-	-	+ £ 6,480


480 19

FS(

Process for establishing options

Process overview

Following the assessment of the case for change to scheduling and dispatch arrangements, we have followed a clear process to establish options for reform as part of the REMA programme.

Dispatch model building blocks

Defining building blocks for dispatch models

		National wholesale price		
		Locational wholesale price		
<u>building</u> cks:	Scheduling structure	Self-scheduling Hybrid scheduling Central scheduling		
<u>Major bi</u> bloc	Status of RTM	Net pool Gross pool		

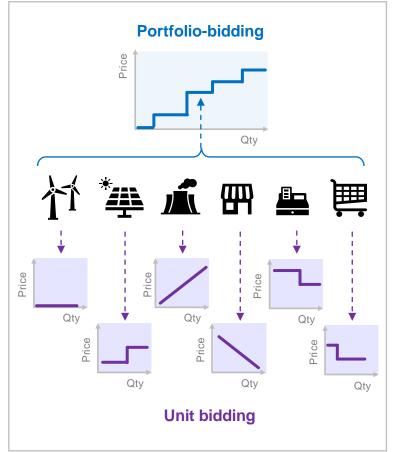
- The two major building blocks in the models are:
 - scheduling structure

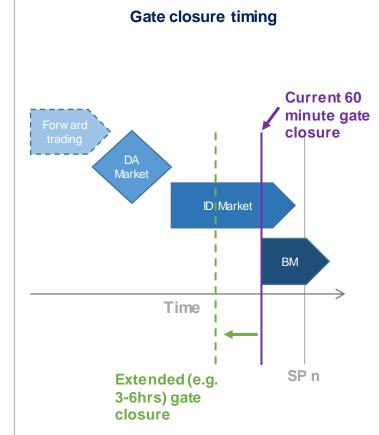
•

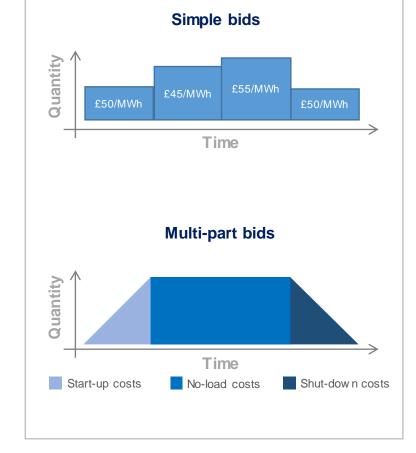
- status of the Real-Time Market (RTM)
- There are then detailed design choices under the different major building blocks, plus further supplementary design choices
- The diagram illustrates where certain options fit more naturally with other design choices

Defining building blocks for dispatch models

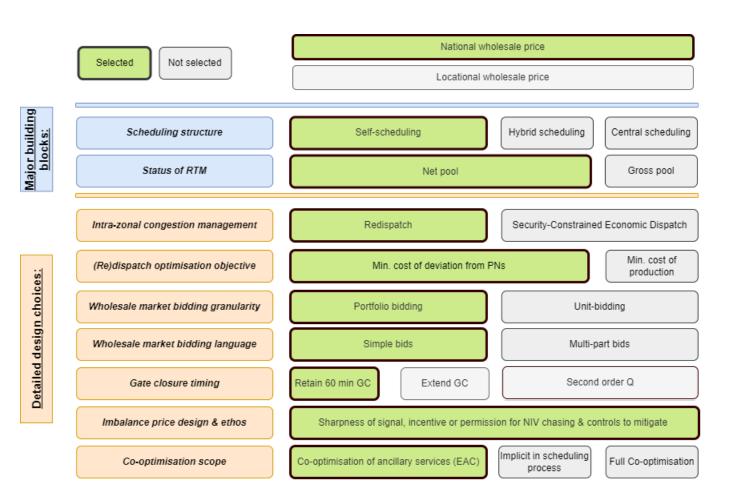
		National wholesale price		
		Locational wholesale price		
blocks:	Scheduling structure	Self-scheduling	Hybrid scheduling Central scheduling	
	Status of RTM	Net pool	Gross pool	
	Intra-zonal congestion management	Redispatch	Security-Constrained Economic Dispatch	
Detailed design choices:	(Re)dispatch optimisation objective	Min. cost of deviation fro	Dm PNs Min. cost of production	
	Wholesale market bidding granularity	Portfolio bidding	Unit-bidding	
	Wholesale market bidding language	Simple bids	Multi-part bids	
	Gate closure timing	Retain 60 min GC Extend GC	Second order Q	
	Imbalance price design & ethos	Sharpness of signal, incentive or permission for NIV chasing & controls to mitigate		
	Co-optimisation scope	Co-optimisation of ancillary services (EAC	Full Co-optimisation	
	Balancing market bidding language	Simple bids	Multi-part bids	


- The two major building blocks in the models are:
 - scheduling structure


•


- status of the Real-Time Market (RTM)
- There are then detailed design choices under the different major building blocks, plus further supplementary design choices
- The diagram illustrates where certain options fit more naturally with other design choices

Detailed design choices are important in the efficacy of dispatch models


Portfolio or unit bidding determines whether or not the bids which participants submit in the wholesale market must relate to a particular unit Gate closure timing determines the speed of the feedback loop between SO dispatch decisions and wholesale market trading

The structure of bids used in wholesale trading: simple bids reflect price & quantity, multi-part reflect technical unit characteristics

25 **ESO**

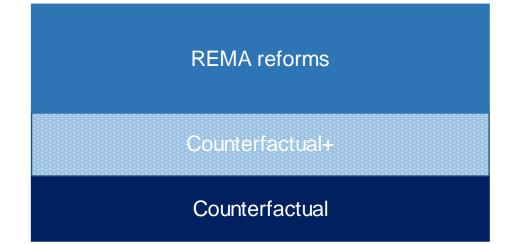
Establishing the Counterfactual

Status quo – Self-scheduling

Scheduling

- Forward financial & physical trading from Y+ ahead to intraday
- Unconstrained wholesale market which doesn't account for security or congestion and is cleared using simple bids reflecting price & volume

Dispatch


- **Net pool** physical position = traded position
- Market responsible for balancing on **portfolio** level for each SP
- **Imbalance** signal designed to incentivise market to help balance the overall system

Redispatch

- SO is a **residual** balancer, intervening after BM gate closure (60 mins)
- Participants submit **simple bids** to move away from nominated position
- Constrained units compensated through BM

The 'counterfactual' establishes what baseline of planned or potential reforms could impact dispatch efficiency

- We have defined a list of planned or in-flight reforms that we think will impact dispatch efficiency.
- We have also identified options for reform under a 'Counterfactual +' scenario. These are potential reforms which we believe could be delivered independently of wider REMA policy reform.
- The options included in counterfactual + have not been assessed and their inclusion does not necessarily mean ESO thinks they should be pursued

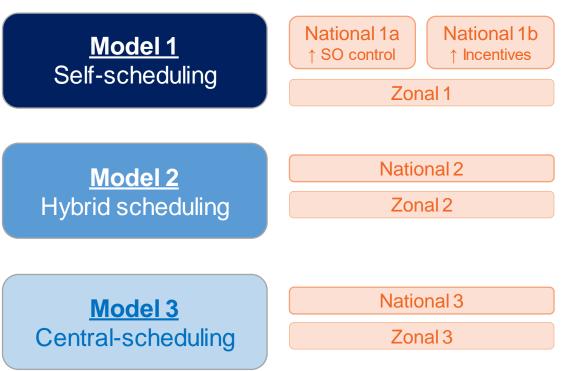
We have identified some reforms which may influence dispatch efficiency and should be considered in counterfactual and counterfactual+ scenarios

- Counterfactual reforms which have been implemented or are planned for implementation
- Counterfactual⁺ reforms which we believe could be implemented without significant policy intervention via REMA*

	Counterfactual	Counterfactual +	
Network build	New transmission build to increase network capacity		
	Balancing Reserve	Closer to real time Reserve and Response procurement	
Ancillary service	Co-optimisation of reserve & response	Locational procurement of Reserve & Response	
reform	'System' ancillary services products (e.g., stability)	New constraint management solutions (inc. AS for constraints)	
	Reserve reform	Maximising boundary transfer for constraints	
		Improved Net Transfer Capacity (NTC) process	
	Lower mandatory MW threshold for new BMUs	Final Physical Notification (FPN) Accuracy / Info imbalance	
		DNO/TO Metering enhancements	
Code reform &		Maximum Export Limit / Stable Export Limit definition clarification	
interconnectors		Separating subsidy payments from BM bids/offers	
		Portfolio ramp limits for Balanced Responsible Parties	
		More efficient interconnector trading	
BM & ESO systems	Open Balancing Platform launch		
reform	State of Energy of energy limited assets		

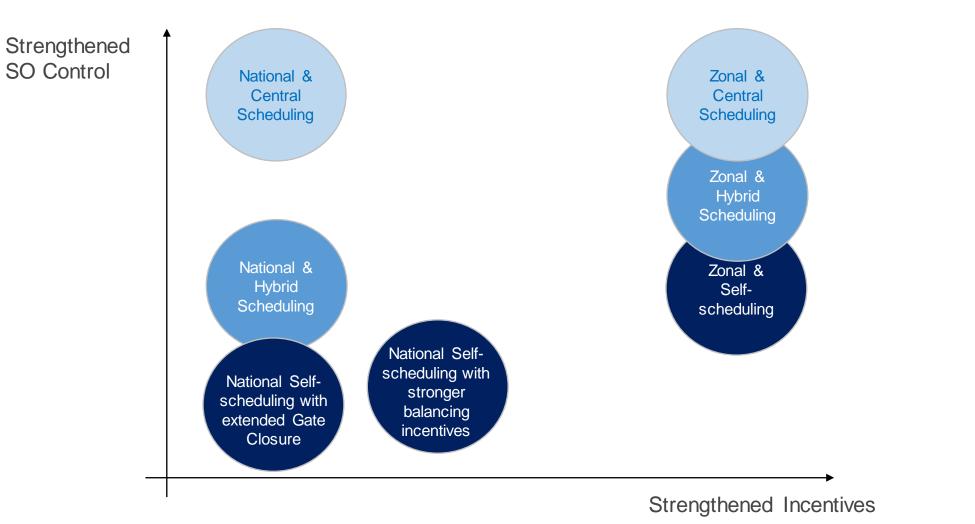
*Inclusion of option in Counterfactual + does not mean ESO has necessarily assessed it or supports its implementation

Establishing the counterfactual


Introducing the strawman models

We broke different Dispatch mechanisms down into component 'building blocks', to identify 7 strawman models ($3 \times zonal$, $4 \times national$)

Dispatch option 'building blocks' framework

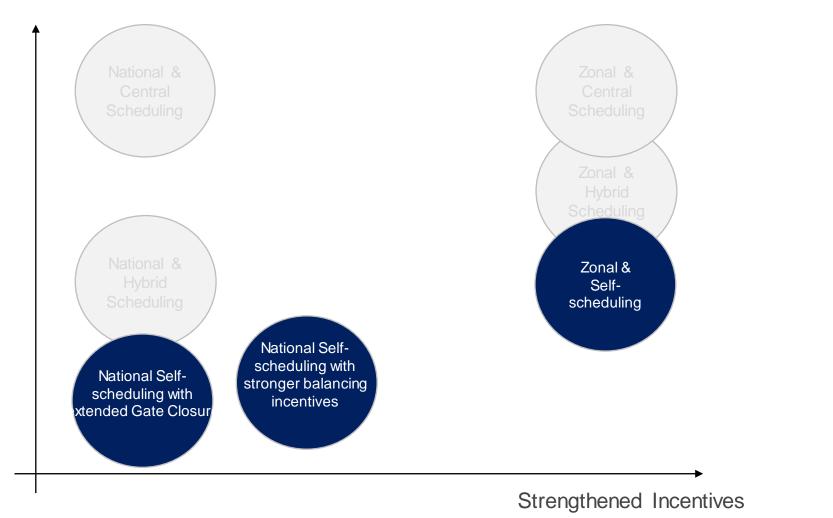


		National w	holesale price	
		Locational	wholesale price	Model 1
0	C			Self-sched
buildin cks:	Scheduling structure	Self-scheduling	Hybrid scheduling Central scheduling	Sell-Scheu
<u>Major building</u> <u>blocks:</u>	Status of RTM	Net pool	Gross pool	
	Intra-zonal congestion management	Redispatch	Security-Constrained Economic Dispatch	Model
<u>Detailed design choices:</u>	(Re)dispatch optimisation objective	Min. cost of deviation from	PNs Min. cost of production	Model 2 Hybrid sched
	Wholesale market bidding granularity	Portfolio bidding	Unit-bidding	
	Wholesale market bidding language	Simple bids	Multi-part bids	
	Gate closure timing	Retain 60 min GC Extend GC	Second order Q	
	Imbalance price design & ethos	Sharpness of signal, incentive or permission for NIV chasing & controls to mitigate		Model 3
	Co-optimisation scope	Co-optimisation of ancillary services (EAC)	Implicit in scheduling process Full Co-optimisation	Central-sche

Defining building Establishing the Creating blocks for dispatch counterfactual strawman models

We can illustratively plot the models using the 'Incentives' vs 'Control' framing established in the Case for Change

Break


Back at 14:20

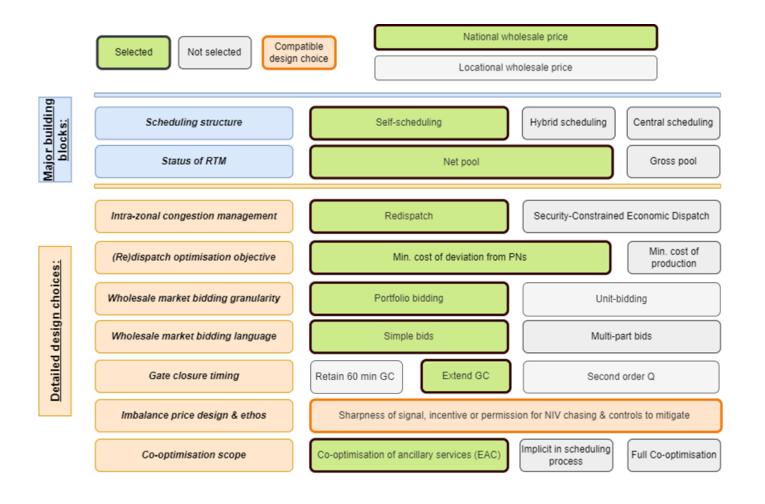
Model 1: Self-scheduling

This section discusses the self-scheduling models

Strengthened SO Control

National Model 1a – Extended Gate Closure

Key features of this model


 Provide the System Operator with more time to make balancing decisions relating to inter-temporal constraints

What are the significant changes vs today?

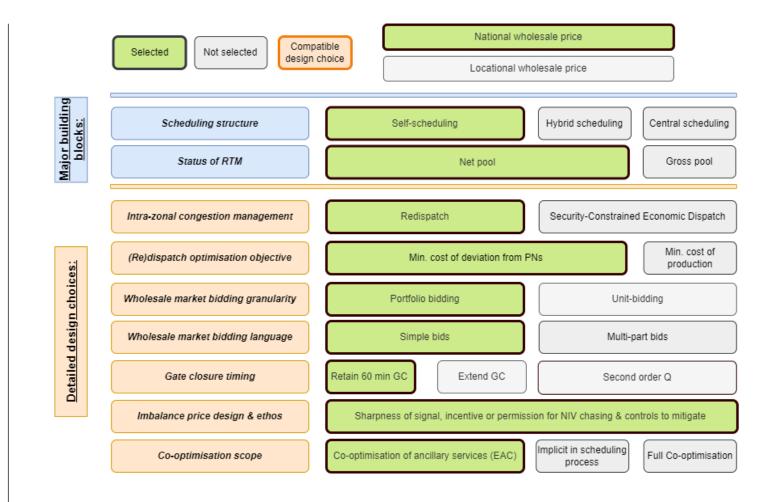
• Extend gate closure beyond the current time (60mins) to a longer time (e.g., 3-6hrs)

What are the key changes for how market parties trade, compared to today?

- Market timing: Extended period between closing trading position and determination of system imbalance price
- Market entry/exit: May be more/less incentivised to leave BM, depending on asset type & size
- Greater cash-out risk: from earlier market closure (volume)
- Otherwise relatively little change, since no significant change to wholesale market bidding/settlement/ hedging approach

National Model 1b – Strengthened Balancing Incentives

Key features of this model


• Provide the market with stronger incentives to selfbalance and reduce SO redispatch

What are the significant changes vs today?

 Re-introduction of dual imbalance pricing, realignment of wholesale market closure, shorter SP length, BM participation, change to BM pricing for energy actions, additional data transparency

What are the key changes for how market parties trade, compared to today?

- Revenue outlook: Improved BM revenue opportunities, and more concentration of competition in BM and intra-day (before Gate Closure)
- **Data:** 5-minute settlement would likely mean significantly greater data requirements from all players
- Greater cash-out risk: from dual-price (price)
- Otherwise no significant change to wholesale market bidding/settlement/ hedging approach

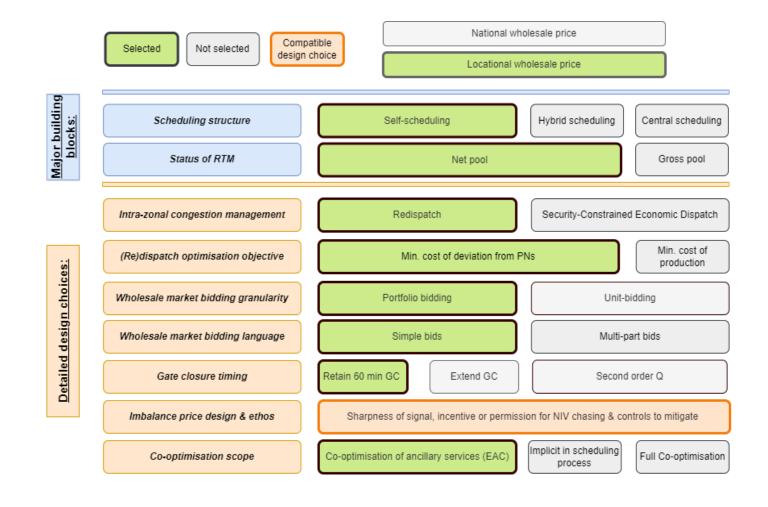
Summary of Hypothesised Pros and Cons

Pros	Cons
Both	Both
 Retaining self-dispatch maintains flexibility for portfolio owners Less complex implementation Compatible with existing cross-border trading Extended Gate Closure Provides more time for redispatch decisions which helps manage intertemporal constraints Strengthened Balancing Incentives Re-pricing energy-flagged actions to the better of the imbalance price and the BOA price may make the BM more attractive vs NIV chasing Encourage market self-balancing, reducing some redispatch Shorter SPs increase arbitrage opportunities for flexible assets & provides incentives to resolve imbalance	 Wholesale market continues to trade disregarding network constraints, meaning redispatch remains high Portfolio trading may inhibit level playing field Identifying market power exploitation is more challenging under self-dispatch and portfolio bidding Extended Gate Closure Limited operational efficiency savings, as market achieves a less accurate position Renewables are likely to be exposed to increased imbalance risk ESO would, de facto, have greater balancing responsibility which contradicts self-dispatch ethos Significant implementation complexity of 5-minute SPs Higher barriers for smaller assets to participate in system balancing in BM vs NIV chasing

strawman models

Zonal Model 1 – Self-Scheduling

Key features of this model


Introduce locational signals in the wholesale market whilst maintaining self-scheduling to encourage participants to schedule according to network congestion

What are the significant changes vs today?

- Introduce zonal pricing but maintain current scheduling arrangements
- Parties only have unrestricted physical access to transmission network within their zone
- Trading between zones requires new market coupling mechanisms and associated governance within GB

What are the key changes for how market parties trade, compared to today?

- Price risk: Need to manage potential changing price differences between zones in forward and spot markets
- Change to contracting: Potential move to greater financial forward trading, since physical transactions between zones cannot be guaranteed before DA/ID auctions

Creating

Summary of Hypothesised Pros and Cons

Pros	Cons
• Zonal price would support efficient scheduling & dispatch, avoiding costly re-dispatch to manage constraints and maximising use of flexible resource such as storage	 Significant change which would involve complex implementation, including new market coupling process and governance Zonal pricing would create new price risks for some market participants
 Zonal pricing could reduce the scope for market power exploitation by providing consistent price signals over different timeframes 	 Portfolio trading may inhibit a level playing field by disadvantaging smaller players who have fewer assets
 Retaining self-dispatch maintains flexibility for portfolio owners to optimise within their zone and between uncongested zones 	Uncertain zonal price differences when contracting between zones dampens incentives for forward trading, reducing forward liquidity
 Retaining self-dispatch avoids some implementation complexity compared to other options (e.g. cross border trading) Improved spot market liquidity, as marginal generators priced out of a 	 Move from physical to financial trading for interzonal transactions could change market participant collateral requirements, creating transition risk and potential higher trading costs
national wholesale market may clear under zonal	 Market clearing algorithm and simple bids may be limited in solving intertemporal constraints in full
	 Potential for inefficient allocation of interzonal capacity at different timeframes

40

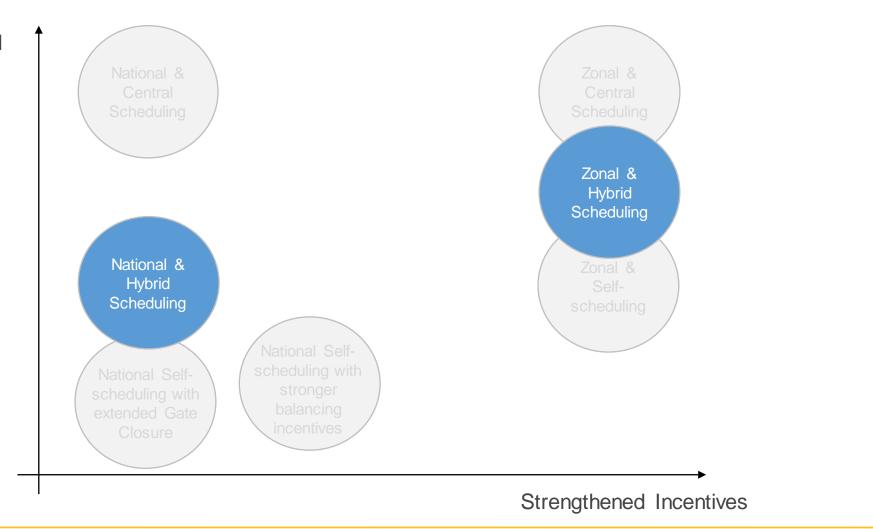
Are the key features of the self-scheduling models clear?

Break out 1: Self-scheduling

Do you agree with the hypothesised pros and cons we have identified so far? What else should we be considering?

Which ones do you think are the most important for the REMA objectives?

Break


Back at 15:05

Model 2: Hybrid scheduling

This section discusses the hybrid-scheduling models

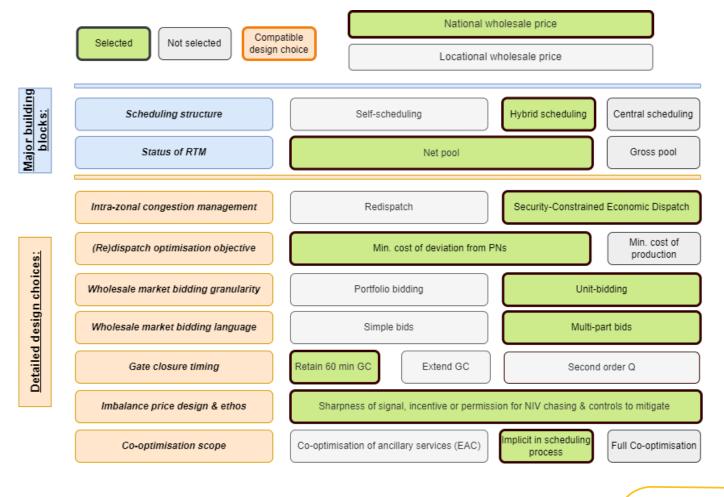
Strengthened SO Control

Defining building Establishing the counterfactual

Creating strawman models

National Model 2 – Hybrid Scheduling

Key features of this model


 Formalise the role of the SO as a central dispatcher by providing a mandate and the optimisation tools to manage intertemporal and network constraints

What are the significant changes vs today?

- Introduce Security Constrained Economic Dispatch (SCED) optimisation model to codify long-term scheduling decisions
- Move all physical trading to new DA/ID market, and to be on a unit basis.
- SO is no longer 'residual balancer' but has codified mandate to schedule

What are the key changes for how market parties trade, compared to today?

- Change to contracting: Replacement of OTC physical forward trades with financial hedges for trading before DA and ID
- Bidding and settlement: Submit unit level bids for wholesale transactions; and settlement at unit level

Defining building blocks for dispatch Establishing the counterfactual stra

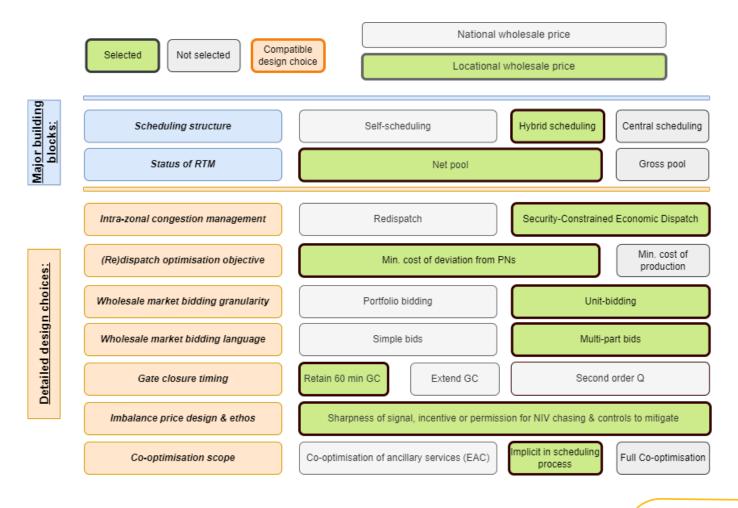
Creating strawman models

Zonal Model 2 – Hybrid Scheduling

Key features of this model

 Formalise the role of the SO as a central dispatcher by providing a mandate and the optimisation tools to manage intertemporal and network constraints effectively.

What are the significant changes vs today?


In addition to changes under national pricing:

- Parties only have unrestricted physical access to transmission network within their zone
- Trading between zones requires new market coupling mechanisms and associated governance within GB

What are the key changes for how market parties trade, compared to today?

In addition to changes under national pricing:

 Price risk: Need to manage potential changing price differences between zones in forward and spot markets

Hybrid scheduling Zonal 2

Model 2

Summary of Hypothesised Pros and Cons

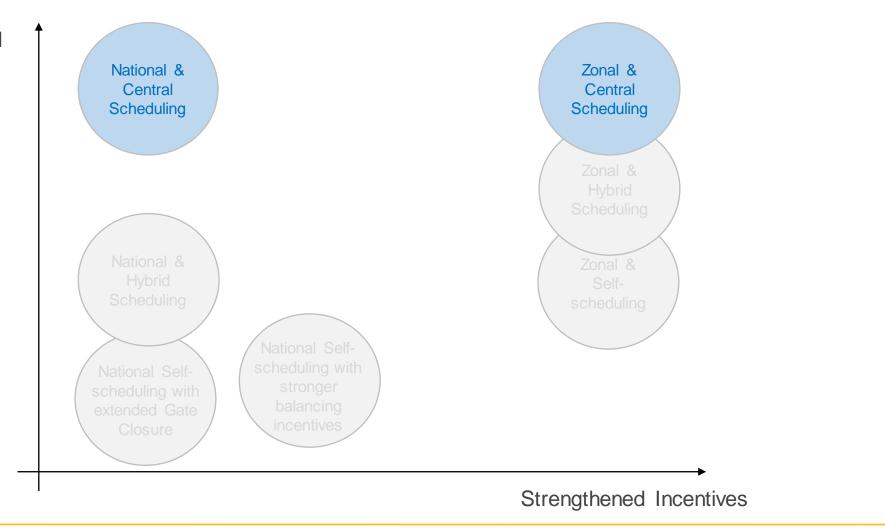
Pros	Cons
Both models	Both models
 Long-term scheduling process would support more consistent treatment of intertemporal constraints vs today 	 Structural overlap between MO and SO could blur redispatch decision making and lead to reduced market efficiency
More transparent dispatch governance due to formalisation of ESO de facto central dispatcher role	 Move from physical to financial trading could change market participant collateral requirements, creating transition risk and potential higher costs
Continued physical trading at DA/ID avoids some impact on cross-	Unit level bidding could reduce some flexibility for portfolio players
border trade vs full central dispatch	• Wholesale market continues to trade in parallel to SCED, reducing operational
Unit-level bidding supports market monitoring and level playing field	efficiency benefits since optimisation uses out of date data
National	<u>National</u>
Lower implementation effort than zonal, particularly for capacity management processes	 Wholesale market continues to trade disregarding network constraints, meaning redispatch remains high
Zonal	Significant implementation complexity from change to DA/ID markets
 Locational incentives would significantly improve efficacy of scheduling & dispatch decisions by reducing redispatch for constraints 	Zonal
	• Zonal pricing would create new price risks for some market participants
 Zonal pricing could reduce the scope for market power exploitation by providing consistent price signals over different timeframes 	Highly complex implementation would include building for both zonal self- dispatch and central dispatch
	Potential for inefficient allocation of interzonal capacity at different timeframes, leading to higher consumer cost

Are the key features of the hybrid scheduling models clear?

Break out 2: Hybrid scheduling

Do you agree with the hypothesised pros and cons we have identified so far? What else should we be considering?

Which ones do you think are the most important for the REMA objectives?


Model 3: Central scheduling

52 **ESO**

This section discusses the central-scheduling models

Strengthened SO Control

National Model 3 – Central Scheduling with Gross Pool

Key features of this model


 All scheduling and dispatch decisions would be derived by the central optimisation which intends to maximise social welfare through full co-optimisation

What are the significant changes vs today?

- Introduce central dispatch algorithm to establish the market schedule and to inform redispatch decisions
- Introduction of central SO/MO entity that operates the day-ahead, real-time, and potential intraday markets
- Introduce full co-optimisation of energy and ancillary services

What are the key changes for how market parties trade, compared to today?

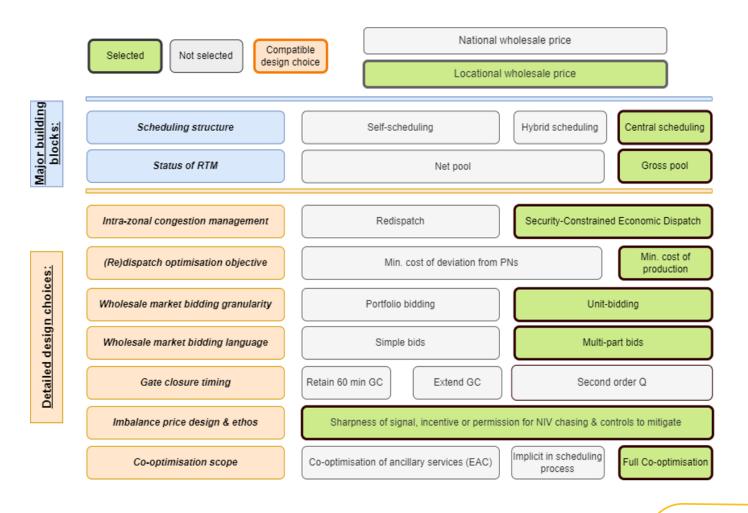
- Change to contracting: Replacement of OTC physical forward trades with financial hedges for trading before DA and ID
- **Bidding and settlement:** Submit unit level, multi-part bids for wholesale transactions; and settlement at unit level
- Intraday trade: Replace intraday continuous market with day-ahead and potentially intraday auctions

Zonal Model 3 – Central Scheduling with Gross Pool

Key features of this model

 All scheduling and dispatch decisions would be derived by the central optimisation which intends to maximise social welfare through full co-optimisation

What are the significant changes vs today?

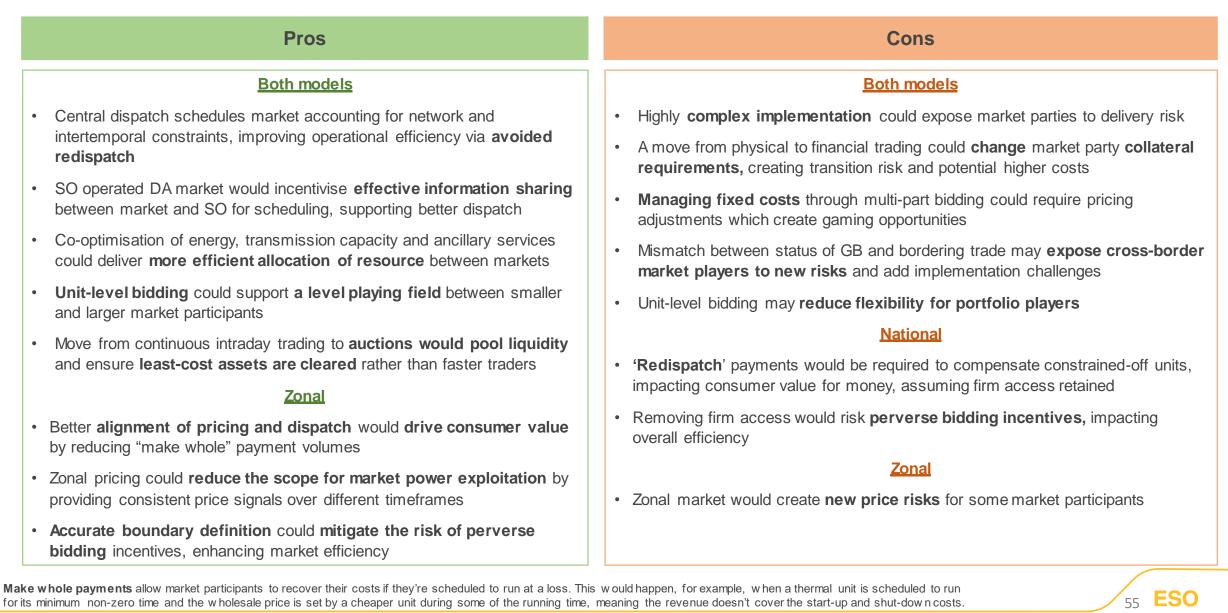

In addition to changes under national pricing:

· Settlement is at a zonal rather than national basis

What are the key changes for how market parties trade, compared to today?

In addition to changes under national pricing:

 Price risk: Need to manage potential changing price differences between zones in forward and spot markets



Summary of Hypothesised Pros and Cons

National 3 Central-scheduling

Model 3

Zonal 3

Are the key features of the central scheduling models clear?

Break out 3: Central scheduling

Do you agree with the hypothesised pros and cons we have identified so far? What else should we be considering?

Which ones do you think are the most important for the REMA objectives?

Break

Back at 16:00

Summary and Next Steps

Summary of what we've covered covered today

Introduced key concepts	 Scheduling; Dispatch; Re-dispatch Self-, Hybrid- and Central-scheduling models Net Pool & Gross Pool Physical & Financial trading
Shared 7 strawman models	 Are intended to cover the spectrum of different scheduling & dispatch approaches taken across jurisdictions and/or seek to address the 'Case for Change' Vary by: The strength of incentives on wholesale market parties to schedule and dispatch in line with underlying system needs The degree of SO influence over scheduling/dispatch outcomes
Asked for input on arguments for and against different models	 Your input will help us scope the range of arguments made around self, hybrid and central scheduling models

- 1. We will publish a summary of your feedback on these strawmen and the hypothesised pros/cons on our website
- 2. Our next point of engagement on these models will be with the DESNZ Operability, Wholesale and Location External Expert Panel
- 3. We continue to evaluate how these models interact with other REMA decisions, such as potential changes to Access, Charging and CfDs

The pre-read provides further high-level timelines of each model and a summary comparison table. We have not discussed these today, but they're intended to provide further information to support industry debate going forward.

Where can you find information and materials on our work?

Net Zero Market Reform webpage:

- Scheduling & dispatch case for change overview
- Materials from workshops we are running with industry on the Case for Change:
 - Pre-read & presentation materials
 - Workshop summary notes
- Q&A document provides more information on the status of our assessment within DESNZ' REMA programme

ESO Market Strategy email:

- Please get in touch with any queries on our case for change material presented so far
- Share your ideas for dispatch reform options to address the identified issues

box.Market.Strategy@nationalgrideso.com