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Introduction
Our study with AFRY found that new approaches and 

metrics would be needed to assess resource adequacy for 

a fully decarbonised power system as existing metrics 

such as loss of load expectation (LOLE) would not be 

sufficient on their own. 

We want to use this spotlight to introduce some new ideas 

on this, which we intend to incorporate in our next study. 

We recognise that some of these ideas can be more 

complex, and so by introducing them now, we hope that 

this will help stakeholders start to become more familiar 

with them. 

In this spotlight we review the findings from our previous 

study and present a comparison of some of the alternative 

adequacy metrics. We then set out an illustrative example 

showing how an alternative approach that considers 

expected energy unserved (EEU) for individual weather 

years (‘weather-conditional EEU’) can provide deeper 

understanding of the potential resource adequacy risks.

We should emphasise that this spotlight is not designed to 

indicate or recommend any decisions on existing policy. 

This includes the current reliability standard, which is set 

by Government. The purpose of this spotlight is to explore 

additional approaches and metrics which can help us to 

better understand future adequacy risks in a fully 

decarbonised power system.

As ever, we invite feedback and welcome engagement 

with stakeholders. The best way to contact the team or 

main author is by email at: 

Box.NetZeroAdequacy@nationalgrideso.com or 

Lisa.Flatley@nationalgrideso.com

We published our first study assessing resource 

adequacy in the 2030s with AFRY in December 2022. 

This study considered the potential risks to resource 

adequacy for a fully decarbonised power system and 

how different portfolios of resources could provide 

adequate electricity supplies, when over 80% of annual 

electricity generation could be from weather-dependent 

resources.1

Since then we have engaged with stakeholders 

through round-table debates and bilateral discussions, 

and have convened a small expert advisory group to 

help us further develop this work with a new Net Zero 

Adequacy Modelling team in the ESO.

We are already working to produce our next study 

assessing resource adequacy in the 2030s, building on 

the study we did with AFRY. We currently expect this 

to be published by September 2024.

Ahead of the next study, we also wanted to explore a 

few areas of interest through a set of shorter 

‘spotlights’. This one, exploring the approaches 

and metrics we use to assess resource adequacy, 

represents the first of these.

We expect further spotlights to follow in the coming 

months, focussing on our assumptions for the next 

study and the role of demand-side response in 

resource adequacy. The panel on the right-hand side 

sets out the timeline of our activities in this area.

Timeline of ESO activities on resource 

adequacy in the 2030s

1 For example, see the ESO’s Future Energy Scenarios (FES) https://www.nationalgrideso.com/future-energy/future-energy-scenarios-fes

Dec 2022 First study assessing resource 

adequacy in the 2030s published 

with AFRY

Mar 2023 Stakeholder engagement including 

round-table debates and bilateral 

discussions

Jul 2023 Published an update reflecting 

themes from stakeholder 

engagement and set out our 

intention for the next study, a set of 

spotlights and establishing an 

expert advisory group

May 2024 Spotlight exploring new 

approaches and metrics published

May/Jun  

2024

Spotlights exploring the role of 

demand-side response (DSR) in 

adequacy and the technology 

assumptions for our next study

Sep 2024 Next ESO study assessing 

resource adequacy in the 2030s

mailto:Box.NetZeroAdequacy@nationalgrideso.com
mailto:Lisa.Flatley@nationalgrideso.com
https://www.nationalgrideso.com/document/273781/download
https://www.nationalgrideso.com/document/285076/download


Recap: why we need new approaches and metrics for resource adequacy

Our study assessing resource adequacy in the 2030s with AFRY found that the GB power 

system will be more susceptible to events that have a lower likelihood of occurring but will 

have a greater impact if they materialise. This is particularly evident from longer-duration 

weather events becoming increasingly dominant in driving stress periods, for a similar 

LOLE value. This is reflected in Figure 1, which is reproduced from that study.

While LOLE remains a useful metric to assess resource adequacy, it is not sufficient on its 

own to characterise a system where the risk is increasingly driven by events that occur 

less frequently. For example, in many years, weather conditions are more benign and so 

we would not expect any tight periods on the GB power system. Occasionally in other 

years, there could be weather patterns that lead to more prolonged loss of load periods 

that are more challenging. 

LOLE is a summary metric that considers an average across all of these conditions. It 

does not reveal information about lower likelihood, high impact events which are driving 

load loss. For example, we cannot see which particular events or weather years are 

driving loss of load and the metric itself is sensitive to the choice of weather years 

considered. In addition, LOLE on its own cannot fully assess the impact of load loss on 

consumers, as it does not provide any information on the unserved energy or how many 

consumers could be affected. Finally, different (sensible) strategies on deploying limited 

duration resources such as batteries can lead to different LOLE values for the same event.

It is increasingly apparent that new approaches and metrics will be needed for resource 

adequacy, potentially considered alongside existing metrics like LOLE. The next slide 

considers some of these options.

Figure 1: table showing how the GB power system is expected to evolve from one where loss of load 

periods are shorter, to one where they could be much longer but less frequent. This was found for 

different portfolios of resources and a broadly constant LOLE of around 1 hour per year. See our 

study assessing resource adequacy in the 2030s for further details.

Our previous study with AFRY showed that the GB power system is expected to evolve from one where tight periods are relatively short to one where they 

could be much longer, even though the loss of load expectation (LOLE) of the system remains broadly similar. This means that the inherent risk profile of the 

system is changing but the key metric to assess resource adequacy is not. In addition, LOLE does not reveal information on what is causing these periods or 

how many consumers could be affected. While LOLE remains an important metric, it is insufficient on its own to assess resource adequacy risks.

https://www.nationalgrideso.com/document/273781/download


Potential options to assess resource adequacy
Table 1 presents some potential metrics to assess resource adequacy. Some options are familiar and already widely used, while others are less familiar. It is possible that future 

resource adequacy assessments need to consider a combination of these through a multi-metric approach – a conclusion also supported in a recent study by the Energy Systems 

Integration Group.  

Metric Description Advantages Disadvantages

De-rated margin The amount of expected available 

capacity above peak demand for the year

• Simple approach that is easy to understand for a wide audience • Does not reflect risk of more complex systems with higher 

penetrations of variable and flexible resources, in which tight periods 

occur more frequently outside times of peak demand

Loss of load expectation 

(LOLE)

The average number of hours with loss of 

load in a year

• Considers tight periods that may occur outside times of peak demand

• Indicates the potential duration of loss of load events

• Can provide greater insight on loss of load events by conditioning on 

specific weather years

• Already widely used in resource adequacy

• Does not indicate the impact of loss of load events

• Does not provide sufficient information on low likelihood, high impact 

events

• Results are sensitive to assumptions on flexible resources like storage

Expected Energy Unserved 

(EEU)

The average volume of unserved energy 

in a year

• Indicates potential severity and cost of loss of load events, particularly 

when combined with LOLE

• Can provide greater insight on loss of load events by conditioning on 

specific weather years

• Results are less sensitive to assumptions on flexible resources like 

storage

• Already widely used in resource adequacy

• Does not provide sufficient information on low likelihood, high impact 

events

Duration, depth and 

frequency of loss of load 

events

Average / maximum / distributions of the 

duration, depth and frequency of loss of 

load events

• Potentially provides more information on the nature and impact of 

loss of load events, including low likelihood, high impact events, 

especially if assessing the distributions

• Results are sensitive to assumptions on flexible resources like storage

• Potential for ambiguity as a single event could lead to more than one 

separate period of load loss occurring close together

Hourly loss of load 

probability

The number of hours in a year in which 

the loss of load probability for that hour 

exceeds a threshold

• Indicates the risk of a shortfall in any given hour

• Might be more intuitive for market participants as it aligns with near 

real-time market information available in GB

• Potentially similar to LOLE

The [95th] percentile of 

unserved energy or loss of 

load hours

The level of unserved energy or loss of 

load hours that has a [1-in-20] chance of 

being exceeded

• Provides information on low likelihood, high impact events

• Provides information on the variability of outcomes

• Requires a lot of simulations (e.g. weather years, outage patterns) for 

a confident estimate

• Less familiar and intuitive for a wider audience

Conditional value at risk 

(CVAR) of unserved energy 

or loss of load hours

The expectation of unserved energy or 

loss of load hours above a defined 

percentile (e.g. 95th)

• Provides information on the probability distribution of low likelihood, 

high impact events

• Requires a lot of simulations (e.g. weather years, outage patterns) for 

a confident estimate

• Less familiar and intuitive for a wider audience

Modelling specific scenarios 

or events of interest

Assessing resource adequacy under a set 

of specifically chosen scenarios

• Allows scenarios of greater interest to be explicitly considered in 

resource adequacy assessments

• Outcomes are wholly dependent on the choice of scenarios modelled, 

which may have inherent biases and not be exhaustive

Table 1: advantages and disadvantages of some of the potential metrics to assess resource adequacy

https://www.esig.energy/new-resource-adequacy-criteria/#:~:text=The%20most%20common%20resource%20adequacy,or%20timing%20of%20generation%20shortfalls.


Illustrative example: Weather-conditional EEU (1)

Our study assessing resource adequacy in the 2030s with AFRY showed that weather 

patterns will be the dominant driver of stress periods in a fully decarbonised power 

system. The ESO currently has access to 34 years of historic weather covering the period 

1985 – 2018 in our pan-European market model (PLEXOS).

In representing the importance of weather and system stress periods, it can be helpful to 

assess resource adequacy conditional on:

1. More challenging weather years

2. More typical or average weather years

Different mixes of generation, interconnection and storage, together with different demand 

profiles, could lead to portfolios that are susceptible to different risks. Therefore, whether 

particular weather years are more challenging or average in their nature will somewhat 

depend on the resources available in the system being studied. This approach should help 

pave the way for deeper analysis on how weather drives system stress events and should 

be of benefit to policy-makers, system operators, energy market participants and 

consumers.  

We can illustrate this with an example. We have modelled a system with LOLE and EEU 

values of 1.7 hours and 2.9 GWh per year, respectively, when considering all weather 

years. Figure 2 shows the EEU conditional on each historic weather year. It shows clearly 

how weather from a small number of years drives loss of load that dominate the 

contributions to the LOLE and EEU values. For example, if this system were to experience 

weather based on that of 2010, the LOLE and EEU values would be 19 hours and 54 

GWh, respectively – much higher than the values reported considering all years.  (A 

weather year in these illustrations runs from 1st October of that year until 30th September 

of the following year).

Figure 2: Weather-conditional EEU for a system with LOLE and EEU values of 1.7 hours 

and 2.9 GWh, respectively. The simulations considered the system operating in 2023/24 

with different historic weather years and 10 different generator outage patterns. Weather 

year 2010 dominates the EEU and is responsible for around half of all unserved energy in 

this system. 

Summary metrics such as LOLE and EEU are useful in assessing resource adequacy over many weather years. It is often the case that weather events from a 

small number of years are responsible for driving potential loss of load. Assessing LOLE and EEU for individual weather years – “weather-conditional LOLE 

and EEU” – can provide insight into which specific years are of most interest for resource adequacy.



Illustrative example: Weather-conditional EEU (2)

This illustrative example has already shown that conditioning on particular weather 

years can provide more insight on how weather drives system stress periods than the 

LOLE or EEU summary statistics that include all weather years. 

We can get an even deeper understanding through visualisation of the underlying 

distributions. Figure 3 shows a scatter plot of loss of load hours versus energy 

unserved for 150 simulations, all conditional on weather year 2010. It also shows 

histograms of the distributions of loss of load hours and energy unserved.

Calculating percentiles (e.g. 95th) which are conditioned on weather years can provide 

a useful summary statistic on the range of possible outcomes.

The scatter plot shows the results of all 150 simulations and shows that the variability 

in outcomes is still large even when using a single historic weather year, providing 

valuable insight to stakeholders on the potential adequacy risks. The colours estimate 

an upper bound on the number of hours individual consumers may be disconnected 

for. In this particular case, the estimated weather-conditional LOLE and EEU are 18 

hours and 36 GWh per year, respectively, and indicated by the black cross. The 95th

percentile of these variables are 27 hours and 81 GWh per year, represented by the 

dotted lines.  

We note that generally a larger number of data points than 150 is needed to 

confidently estimate a 95th percentile.  The numbers reported here are only to illustrate 

the use of weather-conditional percentiles as an additional metric and the further 

insight that they could bring on the variability of outcomes.

Figure 3: Loss of load hours versus unserved energy from 150 simulations, all conditional on weather 

year 2010. Histograms show the distributions of both variables. The colours estimate an upper bound 

on the number of hours individual consumers may be disconnected for. The dotted lines represent the 

95th percentiles and the black cross represents the expectation.

Weather-conditional metrics such as LOLE and EEU provide more insight compared with LOLE and EEU calculated over all weather years. We can seek even 

deeper understanding by visualising the underlying distributions and calculating percentiles which are also conditioned on weather years.



Illustrative example: Weather-conditional loss of load probability

While the weather-conditional LOLE and EEU approach provides greater insight than 

the simple summary metrics, it still does not tell us the events in that year that are 

driving load loss and when the periods of greatest risk are.

We can seek to consider this by calculating the loss of load probability for each hour of 

the year to identify when load loss might occur. We have done this for the same 

illustrative example on the previous slide, still using weather year 2010, and shown the 

results in Figure 4.

Figure 4 shows that the weather conditions in mid to late December are the dominant 

driver of potential load loss in this example, with the loss of load probability close to or 

exceeding around 80% in two periods. In this case, the weather conditions were 

exceptionally cold and coincided with low wind too. December 2010 remains the UK’s 

coldest December on record.1

This example clearly shows that delving deeper beyond the summary statistics of 

LOLE and EEU, as well as the weather-conditional LOLE and EEU, can provide 

greater insight to stakeholders and allow mitigations to be explored.

Using a multi-metric approach helps identify specific events that drive potential loss of load. In this illustrative example, the loss of load probability for each 

hour of the year indicates the periods where risk of load loss is highest. Understanding resource adequacy risks in this way provides critical information to 

stakeholders and allows mitigations to be explored.  

Figure 4: Loss of load probability for each hour in December from 150 simulations, all 

conditional on weather year 2010. This shows that weather conditions in mid to late 

December are the main driver of potential load loss in this example. 

1 For example, see https://blog.metoffice.gov.uk/2022/12/30/cold-december-concludes-warmest-year-on-record-for-uk/
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