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Acronyms 

AC alternating current 

AEMO Australia Energy Market Operator 

AI artificial intelligence 

BCE boundary congested energy 

BCP boundary congestion probability 

BM balancing mechanism 

CBA cost-benefit analysis 

CDF cumulative distribution function 

COLF component over-loading frequency 

COLP component over-loading probability 

CPF chronological power flow 

CPPF constrained probabilistic power flow 

C&R challenge and review 

CRE composite reliability evaluation 

CVaR conditional value-at-risk 

DC direct current 

DER distributed energy resource 

DNN deep neural network 

ECON team Economic team 

ED economic dispatch 

EENS expected energy not served 

EISD earliest in-service date 

ETYS Electricity Ten Year Statement 

FACT flexible alternating current transmission 

FES Future Energy Scenarios 
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GB Great Britain 

HVDC high voltage direct current 

LOLP loss of load probability 

LP linear programming 

LWR Least Worst Regret 

ML machine learning 

NETS National Electricity Transmission System 

NGESO National Grid Electricity System Operator 

NOA Network Options Assessment 

OPF optimal power flow 

PDF probability density function 

POUYA POwer system Uncertainty Year-round Analyser 

PPF probabilistic power flow 

RES renewable energy sources 

RFI request for information 

SC team System Capability team 

SEW social economic welfare 

SOF system operability framework 

SQSS Security and Quality of Supply Standard 

TEP transmission expansion planning 

TO transmission owner 

UC unit commitment 

VaR value at risk 
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Executive summary 

There are significant and growing uncertainties associated with the planning process of Great Britain’s 

transmission network. These are driven by fast-changing generation portfolios with more and more 

renewables and distributed energy resources, electrification of the heating and transport sectors. 

National Grid Electricity System Operator (NGESO) strives to strike a delicate balance between (i) 

benefits from reinforcements in terms of constraint cost reduction and increased system reliability, 

and (ii) risk of network over-investment and of stranded asset.  

This project aims at providing a comprehensive review of the current investment planning 

methodology adopted by National Grid ESO in the context of the Network Options Assessment (NOA) 

process and with reference to the Electricity Ten Year Statement (ETYS), compare it with other 

methodologies used by other system operators and from the research literature, and recommend 

suitable improvements. In the first part of the project we have provided a comprehensive overview of 

the NOA methodology, discussed different planning methodologies adopted by other system 

operators worldwide, and assessed the suitability and proposed potential improvements of the 

current investment planning methodology that is based on least worst regret analysis. 

In this report we aim at addressing two further fundamental questions to improve the NOA process: 

• How could network modelling be improved for operational constraint cost evaluation; and 

• How could the current planning methodology be improved to enhance investment flexibility.  

 

Representation of network modelling in operation 

After a review of methodologies for deterministic and probabilistic operational analysis, we present 

an in-depth discussion on the meaning of the concept and potential definitions of boundary capability 

and introduce a simple case study to demonstrate the probabilistic distribution of boundary capability 

and system dispatch profiles under different conditions. We then propose a few options to improve 

the current methodology of NOA and ETYS from different perspectives.  

Our recommendations for potential improvements of the system operational modelling include: 

 Adopt K-means and stratified sampling algorithms to derive different boundary capability 

setpoints; 

 Introduce a set of reliability indices and risk metrics to improve the confidence in applying a specific 

value for boundary capability in NOA’s cost-benefit analysis (CBA); 

 Integrate optimal power flow and redispatch algorithms into NOA’s CBA, so that the accuracy of 

constraint cost evaluation could be improved by (i) replacing boundary flow constraints with a 

more complete set of network constraints, and (ii) including potential cost-effective redispatch 

options; 

 Establish a unified framework for consistent and comprehensive evaluation of (operational) 

commercial solutions and network-based reinforcement options in NOA; 

 Apply machine learning techniques to (i) accelerate and enhance the power flow analysis for 

security screening of the dispatch profiles, and (ii) automate the “Challenge and Review” process 

of NOA.  
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Enhancement of flexibility in investment planning  

Planning flexibility is associated with the capability of the current NOA CBA methodology to identify 

investment options that allow the system to adapt to changing future conditions (that are represented 

through the Future Energy Scenarios (FES)). An investment option or a group of investment options 

that can “help” the system across scenarios are referred to as flexible investment options or 

“compromise solutions”.  

The identification of flexible investment portfolios is a challenging but essential task to avoid excessive 

and undesired investment and operation costs in the presence of uncertainty. It is challenging because 

it requires studying the operation of the system over multiple years under various conditions, as 

determined by the scenarios, and for different potential combinations of investments. To adequately 

value flexibility there are three key aspects that should be thoroughly assessed: (i) the decision 

structure behind each investment option (decisions that can be made at each stage of the 

development of the options); (ii) the representation of how the future can unfold and how decisions 

can be modified in time; and (iii) the representation of the operation of the system. 

This report discusses these elements in general terms as well as with reference to the characteristics 
of the current CBA methodology. In the context of the current NOA methodology, what we have 
identified is that while the structure of decisions associated with each investment option is relatively 
complex, only two of these decisions (proceed/delay) become available at the time of evaluating 
investment flexibility (logic phase). This inherently limits the capability of the methodology to identify 
(more) flexible strategies. Also, potential futures are assumed to unfold in linear and independent 
patterns (following the scenarios). This reduces the ability of the methodology to identify compromise 
investment solutions that could adapt better to an unfolding future if the conditions anticipated by 
the specific scenarios were not to materialise.  

Potential options that NGESO could pursue to address these limitations include: 

 The determination of the optimal deterministic paths should be automated as much as possible, 
through: (i) an intelligent search of the optimal investment path given the pre-calculated operation 
costs for each option (short term), via relatively straightforward integer or dynamic programming 
approaches; or (ii) algorithms capable of performing an integrated assessment of investment and 
operation costs to determine the optimal path for each scenario (mid to long term). 

 In order to capture more investment flexibility, in the short-term new heuristic approaches should 
be considered that are capable to identify “compromise solutions” among the global set of 
reinforcements that are being considered. This requires exploring options that the current 
methodology may not be able to identify due to the approach used to select the reinforcements 
that are subject to the single-year LWR decisions. In order to achieve this systematically, the long-
term aim should be to build an integrated operation-investment multistage model that could 
consistently assess the role of network and non-network options. Formally, the underlying 
mathematical modelling could be based on stochastic programming with risk considerations, 
whose rationale and outcomes would be similar to and enhance the current least worst regret 
philosophy.  

 Determining the right degree of details in the representation of system operation could reduce 
substantially the computational burden associated to the optimal investment path determination 
in the CBA analysis. This could be achieved by comparing the current optimal deterministic 
investment strategies with those obtained by progressively reducing the number of operational 
periods represented for each year (the selection of representative operation periods can be 
conducted by appropriate clustering methods). In fact, as all recommendations to improve the 
NOA CBA are strictly connected to the representation of operation, any gain in this regard could 
greatly improve the overall performance of the methodology. 
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As a last “umbrella” recommendation that refers to the overall NOA process, NGESO should seek to 
assess the optimal frequency at which the NOA process should be run, as changes in this regard would 
impact the time available to conduct every task in the methodology. Understanding the optimal trade-
offs between running the process every year versus making it less recurrent (e.g., every two years) 
would affect substantially the need for implementation of various recommendations and eventually 
their overall impact. 

  



8 

 

1 Introduction 

1.1 Context 

Ensuring a secure and reliable electricity supply has always been the priority of power system 
operators across the world. Traditionally, power system expansion is used to satisfy the peak 
demand of the system, such as average cold spell (ACS) in the Great Britain (GB), which is 
annually measured by NG system operator and published in its Winter Outlook [1]. 
Transmission expansion planning (TEP) determines the requirement of additional 
transmission capacity to accommodate the increase of generation (to meet demand) and 
avoid network congestion in certain regions. Nowadays, the change of generation portfolio is 
not only bounded by meeting system peaks but also influenced by government policies, 
especially the decarbonisation of the energy sector, typically through integrating more 
renewable energy sources (RES). With increasing penetration of RES, which has a variable 
output, the challenge for system operation may no longer reside in peak demands, while the 
periods of high renewable output can also stress the network and consequently cause high 
voltage and stability issues. Therefore, the economic value of transmission network assets 
can also be enhanced by reducing renewable energy curtailment in addition to meeting 
electricity demand.  

This transition of modern power system into a low-carbon and low-inertia one brings some 
imminent requirements, including the modification of current industrial practices in 
determining optimal network investments.  

• First of all, the temporal and spatial considerations in transmission planning need to 
be expanded. From the temporal perspective, the system security analysis needs to 
be performed on the periods other than the peak snapshot to reflect the volatility of 
renewable energy output across a year. Regarding the spatial consideration, the 
reinforcement options are traditionally assessed on a boundary1  or zone basis by 
splitting the whole system into a number of parts in order to improve computational 
efficiency. However, it is unclear whether this simplification can still hold in the future 
and the reasons are twofold: 1) Power plants are less geographically concentrated due 
to increasing penetration of distributed energy sources and this creates difficulty in 
defining boundaries and zones; 2) The reinforcement options are no longer limited to 
network-based assets, since there are more flexible resources (e.g. battery, electric 
vehicle) on demand side, which are spread across different regions and can provide 
network support as commercial solutions through demand response mechanisms.  

• Secondly, electrification of energy demand and decarbonisation of the generation 
portfolio may lead to change of generation location and demand level in a relatively 

                                                      

1 Boundary is a unique concept used by NGESO to split the GB power system to different parts to reduce the 
complexity of network assessment with minimum impact on the accuracy of power flow. This boundary concept 
is comparable to “zonal areas” applied by other system operators across the world. More information of 
Boundary can be found in ETYS [2]. 
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short timeframe (e.g., 5-10 years) in comparison with the lifetime of network (e.g., 
more than 40 years), which creates investment uncertainties. The traditional “fit and 
forget” practice is no longer held in this case, and network planners need to make 
multi-stage decisions through a scenarios-based approach to quantify the impact of 
uncertainties in the future, so that a delicate balance can be struck between the risks 
(e.g., over-spending, stranded asset) and benefits (e.g., constraint costs2 reduction) of 
a specific investment decision. 

National Grid Electricity System Operator (NGESO) has been continuously upgrading the 

methodologies of relevant assessments in meeting its GB grid operator obligations so that the 

challenges mentioned above can be tackled. NGESO publishes two network related reports 

annually, which are the Electricity Ten Year Statement (ETYS) [2] and the Network Options 

Assessment (NOA) [3]. ETYS is used to determine the power flow across boundaries and 

identify the potential locations with the necessity of network upgrade. Then, NOA assesses 

the social economic welfare (SEW) brought by the reinforcement options that are proposed 

by transmission owners (TOs) and developed in response to the information given in ETYS. In 

the latest development of ETYS methodology, NGESO has begun to test probabilistic approach 

in assessing boundary transfers capability [4]. Also non-network solutions have been 

identified and considered in various Pathfinder projects to manage thermal, voltage and 

stability issues of the network in short or medium terms (i.e., 5-10 years) [5]. Regarding the 

methodology of NOA [6], a Least Worst Regret (LWR) approach has been adopted to identify 

the risk and benefits of reinforcement options across four Future Energy Scenarios (FES).  

In order to consolidate its current methodology used in network planning, NGESO is 
collaborating with the Melbourne Energy Institute to perform reviews and studies of different 
network planning approaches under various uncertainties. In the first report of this project 
[7], a general overview of the NOA and ETYS processes was presented. In addition, the 
network planning practices of different grid operators across the world were reviewed, also 
discussing the available frameworks for decision-making. In this second report, we will put 
more focus on the technical aspect of the ETYS and NOA and elaborate on potential modelling 
of investment flexibility in network planning. 

1.2 Aims and objectives 

In this report, we focus on addressing the questions which are related to technical and 
economic perspectives of ETYS and NOA, specifically: 

• What probabilistic power flow approaches are available and how to transit from a 
deterministic boundary transfer capability assessment to a probabilistic one in ETYS? 

• How can the boundary capability assessed with the probabilistic approach in ETYS be 
better integrated with cost-benefit analysis (CBA) in NOA? 

                                                      

2 In the following context, the term “constraint costs” is used to refer to the additional system operating cost 
when the natural energy flow is above the thermal and voltage constraints of network, which requires some of 
the generators to be redispatched from their optimal levels and/or the activation of commercial solutions (e.g. 
demand response and generation de-loading).  
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• How could Machine Learning (ML) techniques potentially be used to improve the 
workflow of NGESO’s network planning? 

• What is investment flexibility and how can investment flexibility be defined and 
better captured in both the current NOA framework and then looking forward? 

• How to improve the workflows of ETYS and NOA in the short term and long term? 

In order to achieve the aims mentioned above, we have set the following objectives: 

1) Elaborate on the current methodology of ETYS, which deals with the boundary 
capability assessment and the identification of commercial solutions.  

2) Review the probabilistic power flow approaches (e.g., analytical, sampling) available 
in the literature. 

3) Propose feasible improvements on probabilistic sampling and new technical indices 
to increase NGESO’s confidence in applying probabilistic boundary capability. 

4) Establish a methodology which can ultimately avoid the inaccuracy of constraint cost 
evaluation brought by boundary flow constraints. 

5) Identify potential applications of machine learning and artificial intelligence (AI) in 
ETYS and NOA.  

6) Review the definition of investment flexibility to facilitate the understanding of a 
framework that can capture this type of flexibility in a TEP process.  

7) Provide feedback and recommend potential improvements, which enable more 
interactions between the technical analysis in ETYS and CBA in NOA, so the network 
planning methodology can be better-prepared for the challenges in the forthcoming 
lower-carbon power system. 

1.3 Report structure 

• Section 2 gives a review of ETYS’s workflow, deterministic/probabilistic power flow 
methodology and the current methods of identifying commercial solutions. 

• Section 3 presents a literature review of probabilistic power flow models in academia 
and discusses the fundamental definition of boundary transfer capability. Then, 
several approaches are introduced to potentially enhance NGESO’s current 
methodology, especially in selecting the capability value based on some customised 
reliability indices and risk metrics. Furthermore, a method of achieving the full 
integration of network assessment and economic dispatch in NOA’s CBA is proposed. 
Finally, two potential applications of machine learning techniques are elaborated on, 
which have the potential to improve the efficiency of NOA and ETYS’s workflow. 

• Section 4 sets out to discuss the methodological aspects of the NOA CBA with a special 
focus on seeking more investment flexibility from the reinforcement options under 
analysis. 

• Section 5 provides a summary of our feedback based on the review work carried out 
in this project and presents a potential roadmap for implementation of the 
recommendations made in this report.  
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2 The Electricity Ten Year Statement process 

The Electricity Ten Year Statement (ETYS) is a part of several documents published by National 
Grid Electricity System Operator (NGESO) to identify the potential developments which would 
be required to safeguard a secure, affordable and sustainable GB power system. The focus of 
ETYS is to indicate the aggregated power transfer at different boundaries in both current and 
future GB power systems based on the projections given in Future Energy Scenarios (FES). 
This information of power transfer requirement will be used by stakeholders (i.e., NGESO, 
Transmission network owners (TOs)) to propose relevant network-based or commercial 
solutions to expand the capability of current GB network. 

In this section, the workflow in the preparation of Electricity Ten Year Statement is presented. 
The description is based on publications [2], [4], [8], [9] which can be found on National Grid’s 
website, while several rounds of interviews with system capability (SC) team has also been 
carried out to identify and verify the relevant details. 

2.1 Tasks structure and timeline 

The publication frequency of ETYS is the same as NOA, which is on an annual basis. The 
preparation of ETYS is immediately initiated following the publication of the latest NOA in 
January. The timeline of relevant tasks in the ETYS preparation is summarised in Figure 2.1.  

 
Figure 2.1. ETYS preparation timeline 

The details of each task are explained as the following: 

• In February, SC team meets with stakeholders of ETYS (i.e., TOs in GB power system) 
and reach an agreement of the methodology in preparation of the forthcoming ETYS, 
such as the full guideline and case studies, etc. 

• In March and April, SC team consults FES team and determine the input data to model 
the evolution of GB power system in next 20 years. The input data includes generators 
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capacity and corresponding locations, generators ranking order in economic dispatch, 
annual demand profile and winter peak. The analysis is carried out in two parts:  

o Determine the economy and security transfer in winter peak condition based 
on the procedure listed in [9]. 

o Determine unconstrained year-round market-based power transfer at each 
boundary. This profile is simulated by running GB system economic dispatch 
without considering transmission network constraints. 

• Around May, SC team firstly passes the unconstrained power transfers, and security 
and economy transfers based on SQSS to TOs. Then, Data and Modelling team begins 
to construct the network model in Power Factory in collaboration with all 
stakeholders, such as TOs, so that a consistent network model can be used by different 
parties. 

• From the beginning of June to the end of August, Data and Modelling team and TOs 
separately construct and update network models in Power Factory, which represent 
the potential GB power network in Year-1, Year-2, Year-3, Year-4, Year-5, Year-7 and 
Year-103. Generally speaking, no network reinforcement options will be proposed 
with a planning horizon longer than 10 years due to the high level of uncertainty faced 
by GB power system. However, considering the complexity and lead time of some 
projects proposed by TOs, NGESO recognised that there is potentially a requirement 
to assess the options beyond this timeframe of 10 years. 

o SC team:  
i. The team tests network-based reinforcement solutions (proposed in 

the last NOA) on the network models with security constraints, such as 
thermal, voltage compliance, voltage collapse and stability.  

ii. For the reinforcement options which satisfied the security constraint, 
the team will perform both deterministic and probabilistic analysis to 
assess the increment of boundary transfer capability with the 
reinforcements. The methodology of determining boundary transfer 
capability is further elaborated in section 2.2.  

iii. In parallel, commercial solutions (e.g., deloading and intertrip of 
generators) are explored by the team, which can reduce constraint 
costs like network-based reinforcement options. More information of 
commercial solutions is given in section 2.3. 

o TOs: By examining the unconstrained boundary transfer profiles and economy 
and security transfers, TOs will propose network-based reinforcement 
solutions and test them on the latest network models. TOs also have the 
obligation to calculate the additional boundary transfer capability brought by 
individual reinforcement options. 

• In September, the TOs need to submit all the network reinforcement options with the 
corresponding technical and financial information to the Network Development team. 
Subsequently, the Network Development team facilitates the Challenge and Review 
(C&R) process to selectively examine the validity of technical performance of a portion 

                                                      

3 The number following “Year” represents the number of years following the current time. For example, for 2020 
ETYS publication, Year-3 model represents GB power network with confirmed and proposed reinforcement 
options in 2022. 
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of options submitted by the TOs. By the end of September, all valid options will be 
passed to Economic Assessment (ECON) and Technical Economic Assessment (TEA) 
teams to prepare cost-benefit analysis in NOA, while SC team will prepare for the 
publication of ETYS. 

2.2 Boundary capability assessment 

“Boundary” is a unique concept used by NGESO in assessing the aggregated power transfer 
capability between different regions of GB power system. Defining boundaries takes a lot of 
experience in system operation and planning. Before deciding boundary locations, NGESO has 
firstly split the system into different zones in ETYS, which are interchangeably called “Minor 
zones” or “FLOP zones”. Each FLOP zone is formed based on the criteria that it has a strong 
internal network connection but a relatively weaker connection to adjacent areas. Then, 17 
Major zones are defined as the sum of some FLOP zones [2]. A boundary may also be drawn 
across some FLOP zones, which have major generation sources. Boundaries may also sit 
across important power transfer corridors [2], such as the corridor between England and 
Scotland. The illustration of boundaries in GB power system can be found in Appendix A. 

Boundary transfer capability is usually calculated as the maximum power transfer across a 
specific boundary without violating any security criteria (i.e., voltage, thermal and stability) 
and its value can be different considering the power flow directions (i.e., from North to South 
in comparison with from South to North). Traditionally, a deterministic approach outlined in 
National Electricity Transmission System (NETS) Security and Quality of Supply Standard 
(SQSS) [9] is applied in assessing the capability. The assessment is firstly carried out as a 
snapshot at winter peak conditions with given initial dispatching level of generators. In 
addition, sensitivity studies are run at off-peak conditions. In this regard, NGESO has also 
introduced seasonal boundary capabilities to represent the year-round conditions of the NETS 
and then used in the economic dispatch model for the CBA analysis. These capabilities are 
assessed as the scaled winter-peak boundary capabilities or under specific sensitivities. 
However, NGESO has recognised that the winter peak may no longer represent the most 
stressful situation faced by NETS and it is necessary to consider the uncertainty embedded in 
both generation and demand sides, especially with increasing penetration of renewable 
energy sources, such as wind and solar plants. Therefore, NGESO has introduced the 
probabilistic analysis to retrieve the potential boundary transfer profiles and test them with 
security constraints. The following two subsections explain the methodology of the 
deterministic and probabilistic assessments. 

2.2.1 Deterministic method (based on SQSS) 

As mentioned above, a deterministic approach is used in the assessment of boundary 
capability. It is considered to be part of system operator’s obligation that NGESO accurately 
defines the boundary capability following the guidance listed in SQSS. There are two types of 
planned transfer conditions defined in SQSS, which are called “security transfer” and 
“economy transfer”. The main difference between the two transfers is the scaling factors that 
are used to determine the output level of different generator types. The workflow of 
determining the value of a specific boundary transfer capability is shown in Figure 2.2, which 
is explained below: 
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1) First of all, the input profiles of the winter snapshot are retrieved from Future Energy 
Scenarios. These inputs include generation capacity, demand, generator ranking 
order, interconnectors’ import/export capacity and levels. 

2) Then, the base network model is set up in Power Factory, which represents the current 
NETS network and the model can perform alternating current (AC) power flow analysis 
and contingency analysis. 

3) Furthermore, the target year and boundary are selected with a range of reinforcement 
options proposed by TOs. An initial scaling factor is given to individual generators 
based on its fuel type and the transfer type (i.e., security or economy) in the analysis. 
For example, in the security transfer assessment, the scaling factors4 for wind plants, 
solar plants and interconnectors are set to 0, while the scaling factor of conventional 
generators is set to 1. However, in the economy transfer, the initial scaling factor for 
wind plants is set to 0.7, while the scaling factors of coal and nuclear plants are set to 
0.85. 

4) Subsequently, for every network model, which is reconfigured from the Year-1 model 
by adding FES corresponding generation and demand and also a combination of 
reinforcement options modelled to be evaluated, SC team runs several contingency 
case studies and make sure the whole network is operating in compliance with its 
thermal and voltage constraints. It is worth mentioning that the contingency is only 
considered for the network assets, such as branches and direct current (DC) links. 
Before storing the final value of boundary transfer capability, there are several loops 
to be executed, which are elaborated as following: 

Step 1: After selecting the first contingency case, the network model is altered by 
removing corresponding outage components, and then the operation is 
simulated in Power Factory.  

Step 2: If any of the thermal, voltage compliance and voltage collapse constraints 
are violated, post-fault actions are taken to alleviate the network 
congestion. The post-fault actions include post-fault ratings of lines, QB 
transformer, flexible alternating current transmission (FACT) networks. 
All these actions are executed manually in the network simulation based 
on advice from the experts in SC team. It needs to be highlighted that 
post-fault actions in the planning stage don’t include market-based 
solutions, such as re-dispatching generators. 

Step 3: If all contingency cases have been simulated and results don’t have any 
constraint violation, the scaling factor of generators on the boundary side 
with net generation is increased at a specific interval (i.e., 10%), while the 
generators output level on the opposite side would decrease to avoid 
over-generation and keep the balance of demand and generation in the 
system. In this case, the feasibility of a case with higher boundary transfer 
can be tested.  

Step 4: The highest value of feasible transfer capability is stored for the selected 
boundary. It needs to be mentioned that if the generation portfolio with 
initial scaling factors had resulted in a violation of network constraints, 

                                                      

4 All detail can be found in the Appendices C and E of SQSS [9] for the settings of security transfer and economy 
transfer respectively. 
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the scaling factors on the net generation side would be decreased to test 
the case with a smaller transfer volume.  

 
Figure 2.2. Workflow of evaluating boundary capability with a deterministic approach defined in SQSS 

Capability under both economy and security transfer requirements can be determined with 
this workflow by applying different scaling factors, as explained in point 3) above. After 
determining both the security and economy transfer requirements of all the boundaries, the 
capability under the higher required transfer is used as the input for economic dispatch 
studies in CBA of NOA. The increment of boundary transfer capability due to reinforcement 
options is also passed to CBA, so that the reduction of system annual operating cost caused 
by reinforcement can be calculated to inform the least-worst regret (LWR) analysis in NOA. 
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2.2.2 Probabilistic method (all year-round) 

As mentioned in [4], a probabilistic methodology in boundary capability assessment has been 
introduced in order to identify the likelihood of events other than winter peak which can 
stress the network. In comparison with the deterministic approach, the probabilistic one 
simulates the network behaviour with year-round generation output profiles, which is crucial 
for evaluating the impact of increasing penetration of renewable generation and 
interconnectors.  

Figure 2.3 gives a summary of the probabilistic methodology in boundary transfer capability 
assessment. Firstly, year-round transfer profiles at hourly resolution are generated and 
examined in the network. The profiles would be divided into two groups and labelled as 
“acceptable” and “unacceptable”, which represent the network operation condition 
with/without violating security constraints (i.e., thermal, voltage collapse, voltage 
compliance5). Then, the profiles would be converted to power segments at a specific interval 
(e.g., 100 MW) to indicate the period of relevant transfer levels. For example, if there are two 
snapshots of transfer volume, which are 1643 MW and 1670 MW, both of them would be 
categorised into the segment 1600 MW, if the segment interval is 100 MW and the cover 
range is from the segment setpoint to the setpoint plus the interval. Then the corresponding 
1600 MW segment hours would increase by 2. After deriving the transfer volume segment 
profiles, further calculation is performed to determine the opportunities lost and energy at 
risk, which are consequently used to determine the boundary transfer capability. It needs to 
be mentioned that there are two sets of the opportunities lost, energy at risk and boundary 
capability for each boundary, which are separated as positive and negative values to 
represent the bi-directional energy transfers across the boundary. The following subsections 
2.2.2.1-2.2.2.4 explain the tasks in each block of Figure 2.3. 

  
Figure 2.3. Probabilistic methodology in determining boundary transfer capability 

                                                      

5 Currently, POUYA has only developed the capability to run DC power flow with network corrective actions 
included, and therefore voltage collapse and compliance cannot be examined in probabilistic analysis. SC team 
has planned to develop the AC power flow function in POUYA within the next couple of years. 
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2.2.2.1 Probabilistic transfer profiles generation 

Unlike the analysis of few peak and minimum snapshots, the year-round probabilistic analysis 
has many data points to be analysed. Therefore, it is necessary to develop a tool to simulate 
network operation and more importantly post-fault actions, which need to be executed 
automatically instead of manually to improve computational efficiency. SC team has been 
developing a tool to perform more efficient year-round analysis of the network, which is 
called POwer system Uncertainty Year-round Analyser i.e., “POUYA”. Currently, POUYA only 
has the capability to perform DC power flow with network thermal constraints, while the 
capability of applying voltage constraints are under development. POUYA can also 
automatically apply some post-fault actions, such as post-fault ratings and QB tapping. 

The workflow of generating and verifying year-round boundary transfer profiles is shown in 
Figure 2.4. The detail of each block is further explained below: 

Step 1: First of all, the network model is to be set up in Power Factory based on the selected 
year (Year 1-5/7/10). 

Step 2: Then, SC team uses a unit commitment (UC) model to generate time-series dispatch 
profiles of generators without imposing network constraints. The UC is simulated on 
a weekly basis with an hourly resolution in order to properly capture the 
charging/discharging behaviours of pumped hydro storages. The generation capacity 
and marginal cost is retrieved from FES and BID3. There is a Monte Carlo simulation 
to generate 10 scenarios for each year to cover the various output levels of 
renewable energy and system demand.  

Step 3: Furthermore, the target boundary and a list of reinforcement options are selected 
to update the network model. Subsequently, POUYA uses its interface to extract 
network parameters from Power Factory, which makes POUYA ready for running DC 
power flow analysis. 

Step 4: There are three loops nested for POUYA simulation in the case study of single 
network topology. These loops are contingency cases, scenarios, and hourly 
generation and demand profiles in each scenario. As mentioned above that, POUYA 
can only examine whether the thermal constraints are violated, while voltage 
constraints examined in the deterministic method are not applied here. An hourly 
dispatch profile is only labelled as “acceptable” if all contingency simulation 
succeeded without any constraint violations, otherwise this profile is labelled as 
“unacceptable”. At this stage of the analysis, all profiles are considered as individual 
snapshots without any link. Consequently, 87,6006  snapshots are examined with 
thermal network constraints based on the current methodology. 

                                                      

6 Since the UC simulation has an hourly resolution, annual simulation generates 8760 time-steps. Moreover, 10 
scenarios are considered in Monte Carlo simulation in profile generation, therefore the total number of 
snapshots is 87,600. 
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Figure 2.4. Workflow of evaluating boundary transfer profiles with a probabilistic method 

After labelling all the snapshots, the corresponding transfer profiles need to be converted to 
the transfer frequency as mentioned in Figure 2.3, which is in the unit of hours per year or 
per season. The current practice of SC team is to distribute the profiles into segments with 
100 MW interval. Since there are multiple scenarios in the Monte Carlo simulation, the value 
of the aggregated transfer frequency needs to be divided by the number of scenarios (i.e., 
10). An example of boundary transfer frequency in one season is shown in Figure 2.5. It can 
be noticed that there is a range of segments which have both acceptable and unacceptable 
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transfers. This phenomenon indicates different generation dispatch snapshots may result in 
the same boundary transfer requirement, while some of the snapshots can result in network 
constraint violation. This further highlights the importance of using probabilistic analysis to 
understand events other than winter peak which stress network operation.  

Since there are overlap regions between acceptable and unacceptable transfer frequencies 
for both positive and negative power transfers in Figure 2.5, which are from -3800 to -900 
MW and from 4500 to 5700 MW, further calculation is carried out in order to draw a single 
value of positive/negative boundary transfer capability. In this case, SC team has introduced 
the concept of opportunities lost and energy at risk, which will be elaborated in the following 
sections. 

 
Figure 2.5. Transfer frequency example of a specific boundary in one season  

2.2.2.2 Opportunities lost 

The opportunities lost is used to indicate the volume of energy which could be transferred 
through the boundary in the acceptable dispatch profiles, but won’t be if the capability 
setpoint is lower than the selected transfer segment in a boundary flow-constrained 
economic dispatch model. The procedure of determining opportunities lost is shown in  Figure 
2.6, which is elaborated below:  
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Figure 2.6. Flowchart of opportunities lost calculation 

Step 1: First of all, the initial value of the transfer capability setpoint is the smallest segment 
with a positive acceptable transfer frequency. Taking the example shown in Figure 
2.5, the initial capability setpoints for negative and positive transfers are both 0 MW 
respectively, since that’s the smallest segment which has a valid acceptable transfer 
frequency.  

Step 2: Then, the overestimated constraint volume at each segment being larger7 than the 
setpoint can be calculated. The numerical example shown in Figure 2.5 for negative 
segments would be: 

▪ Transfer capability setpoint (MW): 0 
▪ Valid transfer segments (MW): −100/−200/−300/…/−2900/−3000 
▪ Transfer frequency (hr/season): 16/19/22/…/2/1 
▪ Overestimated volume at -100 MW: [0 − (−100)] ∙ 16 = 1600 𝑀𝑊ℎ 
▪ Overestimated volume at -200 MW: [0 − (−200)] ∙ 19 = 3800 𝑀𝑊ℎ 
▪ … 
▪ Overestimated volume at -3000 MW: [0 − (−3000)] ∙ 1 = 3000 𝑀𝑊ℎ 

Step 3: The opportunities lost at 0 MW can be calculated as the sum of all overestimated 
volume: 

1600 + 3800 + 6600 +⋯+ 3000 =  364200 𝑀𝑊ℎ/𝑠𝑒𝑎𝑠𝑜𝑛 
Step 4: The next segment (i.e., -100 MW) is selected as the setpoint and Steps 2 and 3 are 

repeated to calculate the corresponding opportunities lost, which is 331900 
MWh/season. The overestimated constraint volumes at each segment with a 
capability setpoint of 0/-100 MW are shown in Figure 2.7.  

                                                      

7 The comparison is carried out based on the absolute values of the setpoint and segments, which means for a 
setpoint of 0 MW, the segments ranging from -100 to -3000 MW (which is the largest negative transfer segment 
with a valid power transfer) should be considered in overestimated volume calculation. 
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Figure 2.7. Overestimated volumes with 0 MW and -100 MW boundary transfer capability setpoints respectively 

Step 5: The last setpoint would be the last negative segment with a valid acceptable transfer, 
which is -3000 MW as seen in Figure 2.5. The opportunities lost at this setpoint is 0 
MWh/season by repeating Steps 2 and 3. The quantity of opportunities lost at the all 
valid negative transfer capability setpoints is shown in Figure 2.8. 

 
Figure 2.8. Opportunities lost of all negative capability setpoints 

Step 6: After the calculation of opportunities lost of all capability setpoints in negative 
transfer, Step 2-5 are carried for all positive power transfer segments. The 
opportunities lost in these segments are shown in Figure 2.9. 

 
Figure 2.9. Opportunities lost of all positive capability setpoints 
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In summary, we will see a gradual decline of opportunities lost value from the segment of 
lowest transfer capability to the highest one.  

2.2.2.3 Energy at risk 

The concept of energy at risk is used to indicate that the volume of unacceptable transfers 
which cannot be transferred, when the capability setpoint is lower than the segments of 
unacceptable transfers. The procedure of determining energy at risk is shown in Figure 2.10, 
which is further explained below: 

 
Figure 2.10. Flowchart of energy at risk calculation 

Step 1: First of all, the maximum feasible transfer setpoint needs to be selected. This is the 
last segment without any unacceptable transfer. According to the profiles shown in 
Figure 2.5, it can be seen that the maximum segment without unacceptable transfer 
is 100 MW for positive transfer, which is used as the feasible transfer setpoint in this 
case. For the negative transfer, since there has already been 1 hour/season of 
unacceptable transfer at 0 MW segment, the maximum feasible transfer setpoint 
should be set to 0 MW for the evaluation in the negative transfer capability. 

Step 2: Then, the initial and last values of the transfer capability setpoint are selected, which 
represent the lowest and highest segments based on transfer power with a valid 
unacceptable transfer frequency. Taking the example shown in Figure 2.5, the initial 
transfer capability setpoints are 200 MW for positive power transfer and -100 MW 
for negative power transfer. Regarding the last transfer capability setpoint, it would 
be 7000 MW and -3300 MW for positive and negative power transfer respectively. 

Step 3: Then, the overestimated constraint volumes at each segment from initial to last 
feasible transfer setpoints can be calculated. Figure 2.11 depicts the overestimated 
constraint volumes of the positive power transfer segments based on the profiles 
given in Figure 2.5. The detail of the calculation is listed at below: 

▪ Underestimated volume at 200 MW: [100 − 200] ∙ 1 = −100 𝑀𝑊ℎ 
▪ Underestimated volume at 300 MW: [100 − 300] ∙ 1 = −200 𝑀𝑊ℎ 
▪ Underestimated volume at 400/…/6900 MW 
▪ Underestimated volume at 7000 MW: [100 − 7000] ∙ 1 = −6900 𝑀𝑊ℎ 
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Figure 2.11. Overestimated constraint volumes of positive power transfer segments 

Step 4: Calculate the energy at risk at each capability setpoint. Based on the profile given in 
Figure 2.5, the energy at risk for negative and positive power transfer are separately 
shown in Figure 2.12 and Figure 2.13. For the calculation detail, the energy at risk in 
the case of 7000 MW capability setpoint can be calculated as the sum of 
overestimated constraint volumes between 200 and 7000 MW: 

(−100) + (−200) + ⋯+ (−6900) =  −610700 𝑀𝑊ℎ/𝑠𝑒𝑎𝑠𝑜𝑛 

  
Figure 2.12. Energy at risk of negative power transfer segments 

 
Figure 2.13. Energy at risk of positive power transfer segments 
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In summary, the absolute value of energy at risk will gradually increase from the first segment 
of unacceptable transfer to the last segment, as seen in Figure 2.12 and Figure 2.13. 

2.2.2.4 Boundary transfer capability derivation 

The intuition behind the calculation of opportunities lost and energy at risk is to quantitatively 
measure the potential impact of applying a nonoptimal value to limit boundary flow in NOA’s 
CBA. An inadequate boundary transfer capability setpoint would consequently influence the 
accuracy of estimating constraint costs in the CBA. For instance, taking the example given in 
Figure 2.5, there are two circumstances when boundary capability on positive power transfer 
may be set to an inappropriate level: 

• Capability setpoint too low: Let’s set the boundary capability setpoint to 2000 MW 
for positive power transfer. In this case, it is much less likely that the simulation of 
boundary flow-constrained economic dispatch would give any dispatch profile with a 
network constraint violation. This is because only 4 hours per season with a 
unacceptable dispatch profile are presented before boundary transfer reaching 2000 
MW, which accounts only 3.5% of all unacceptable transfer periods in positive transfer 
segments, as depicted in Figure 2.5. However, this 2000 MW setpoint may seriously 
limit the boundary transfer in some acceptable dispatch profiles, such as the ones with 
a transfer level in the range 2000 to 4400 MW, and consequently result in 
unrealistically high network constraint costs. Essentially, the network would be able 
to handle some dispatch profiles without constraint violation, but it is not allowed to 
do so in this simulation due to a “conservative” selection of setpoint. 

• Capability setpoint too high: If we set the boundary capability to 6000 MW, although 
all positive acceptable dispatch profiles given in Figure 2.5 would be successfully 
simulated in CBA, there could also be a large number of unacceptable dispatch profiles 
which are “disguised” as acceptable ones in the boundary flow-constrained economic 
dispatch. In this case, the boundary flow constraints cannot mimic the function of 
network constraints and the CBA would underestimate the constraint costs. 

Subsequently, it is convenient to adopt a method that can determine an appropriate 
boundary capability setpoint and “neutralise” the risk of using boundary flow constraints to 
represent network constraints in economic dispatch for CBA. The SC team has used an index 
called “constraint forecasting error” (𝐶𝐹𝐸(𝑠)) to find an appropriate boundary capability. This 
is calculated via opportunity lost (𝑂𝑃𝐿(𝑠)) and energy at risk (𝐸𝑎𝑅(𝑠)) at each transfer 
segment (𝑠), as shown in (2.1). By subtracting energy at risk from the opportunity lost, a 
balance can be struck between overestimating and underestimating the boundary transfer 
capability. 

𝐶𝐹𝐸(𝑠) = 𝑂𝑃𝐿(𝑠) + 𝐸𝑎𝑅(𝑠)  (2.1) 

By processing the opportunities lost and energy at risk profiles given in Figure 2.8, Figure 2.9, 
Figure 2.12 and Figure 2.13, the constraint forecasting errors for  are displayed in Figure 2.14. 
It can be noticed that the value constraint forecasting error crosses the zero value when the 
transfer capability is at -1700 and 4700 MW for positive and negative transfer respectively. 
Therefore, the maximum transfer capability of this specific boundary in this season is set to -
1700/4700 MW based on the probabilistic analysis. 
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Figure 2.14. Opportunities lost, energy at risk and constraint forecasting error of a specific boundary in one season 

2.3 NOA Pathfinder projects 

As mentioned in section 2.2, ETYS does not include any market-based solutions in the 
assessment of boundary transfer capability. However, NGESO has envisaged the crucial role 
of non-asset-based solutions in provision of system services in the future. Also some issues 
like high voltage and stability issues not associated with bulk transfers cannot be captured 
through the annual ETYS analysis. Therefore, NGESO has set up several groups to explore 
different solutions and relevant contract arrangements, which are called “NOA pathfinder” 
projects. Since the introduction of NOA pathfinder projects are relatively new and still under 
exploration, these projects are quite flexible in terms of time plan and deliverables. 

There are ongoing Pathfinder projects in NGESO: 

i. High voltage management; 
ii. Constraint management; 

iii. Stability management. 
The high voltage management project is used to address voltage issues in regions of the NETS. 
Traditionally, the voltage issue can be managed through installing assets, such as shunt 
reactors, shunt capacitors, synchronous compensators and static reactive compensators. 
However, NGESO considers the full range of solutions from assets to non-network market 
based commercial services. The first trial8 of high voltage management Pathfinder projects 
was in the Mersey area to address the increasing need to absorb MVArs in recent years which 
has resulted in increased voltage management costs overall. In the project tender participants 
were required to have a dispatchable reactive power capacity of no less than 15 MVAr. The 
tenders were run separately for short term and long term contracts, for example for the long-
term project, the contracts were successfully awarded for a period of 9 years starting in April 
2022. 

For the constraint management project, the concept is to reduce the constraining period and 
the corresponding cost of specific boundaries. The constraining cost is incurred when the 
transmission network assets are overloaded and require a redispatch of generators in order 

                                                      

8  More information can be found in https://www.nationalgrideso.com/industry-information/balancing-

services/transmission-constraint-management 

https://www.nationalgrideso.com/industry-information/balancing-services/transmission-constraint-management
https://www.nationalgrideso.com/industry-information/balancing-services/transmission-constraint-management
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to avoid constraint violation. The constraint management focuses on managing active power 
at only when a fault has occurred thus reducing network constraint costs of pre-fault 
constraining plant.  

The constraint management pathfinder can also be utilised to deliver the commercial 
solutions options which are proposed by the ESO and included in the NOA together with 
assets-based reinforcement options from TOs. For example, there are four ESO-led 
commercial solutions proposed in 2019/20 NOA [3]. It needs to be pointed out that 
commercial solutions can be contracted with a flexible duration and usually require low initial 
investment (for control and communication devices).  

The current workflow of constraint management projects can be summarised as shown in 
Figure 2.15. Other Pathfinder projects can basically follow a similar procedure. The actions 
involved in each block of Figure 2.15 are explained below: 

 
Figure 2.15. Workflow of constraint management Pathfinder project 

Step 1: The procedure starts with identifying boundaries which have a potentially long 
constraining period. For instance, it was found that there are scenarios which 
indicate some constraint management opportunities on the North side of the 
boundary B6 were required for significant amount of time every year.  

Step 2: Then, the simulation results of future system dispatch and historical dispatch data 
are analysed to identify the service’s technical requirements, such as magnitude, 
activation frequency and duration.  

Step 3: Constraint management are traditionally achieved through re-dispatching 
generators in the resource pool of the balancing mechanism (BM), and this 
redispatch will consequently incur relevant operational cost. This information of BM 
cost can be used to guide the price setting of the constraint management service. 
Constraints are also managed through intertripping generation by arming plant pre-
fault to trip off post fault. As part of an innovative approach to managing constraints, 
NGESO proposed a service which can reduce the power flows across a boundary and 
sent a request for information (RFI) to the market to gauge intertest and understand 
the expected revenue of the market. 

Step 4: After setting the expected cost of constraint management service, CBA is performed 
so that the benefit of constraint management service can be directly compared with 
resolving the constraint and balancing the system in the Balancing Mechanism. 

Step 5: If the CBA shows that the service has a potential to bring significant reduction in the 
balancing costs, then the volume required to procure is determined. 

Step 6: Through tendering process, NGESO contracts the service based on relevant criteria 
and awards annual contracts to the successful tenders.  



27 

 

Step 7: The steps are repeated to determine the volume required for the next year and the 
tender is re-run to ensure the cheapest volume is contracted to resolve the 
constraint.  

With regard to stability management, it is related to operational options to enhance system 
security from stability and frequency perspectives. The stability pathfinder project has 
recently published the result of its Phase-1 inertia service tender. The result shows that 12.5 
GW.s inertia has been contracted for six years from 2021 to 2026. 

In conclusion, Pathfinder projects helped to bridge the gap between long-term planning and 
short-term operation in NETS as well as proposing a broader range of solutions to meet 
additional network needs. The mechanism of implementing Pathfinder projects is similar to 
the one of capacity market 9  to incentivise flexibility provision required in short-term 
operation. While Pathfinder projects focus on addressing the rising concerns of network 
congestion to meet electricity demand across the system, the capacity market is aimed at 
ensuring enough generation capacity is being procured to meet system peak demand. The 
generation portfolio of NETS has been quickly evolving, especially considering the increasing 
penetration level of renewable energy sources. Renewable generation usually has a lower 
capacity factor than base-load conventional generators. Subsequently, in order to keep the 
same average energy output of the system generation portfolio, the installed capacity of 
renewable generation can be higher than the replaced capacity of conventional generators, 
and consequently leads to a higher level of imbalance at different boundaries of NETS. 
However, the flexibility embedded in demand side and storage can be used to manage the 
network constraints instead of building assets-based reinforcements. More importantly, the 
Pathfinder projects provide a route to secure the service provision by utilising this flexibility 
in a medium term. 

 

  

                                                      

9 Capacity market has been introduced in NETS at 2014 and it is used to ensure enough generation capacity is 
procured for the forthcoming winter peaks. 
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3 Probabilistic power flow analysis 

In section 2, we have discussed the current workflow and methodology used in Electricity Ten 
Year Statement (ETYS), and it can be clearly seen that NGESO has recognised the essential 
value of applying a probabilistic approach in assessing boundary transfer capability across GB 
network. First of all, assessing boundary transfer capability is one of the NGESO’s obligations 
as defined in SQSS. At the same time, an accurate estimation of this capability can improve 
the accuracy in NOA’s CBA. The current methodology of integrating the boundary transfer 
capability approved by SC team and NOA’s CBA is shown Figure 3.1.  

In order to identify the benefits of different reinforcement options, especially the benefits of 
options on reducing constraint costs, it is necessary to perform year-round system economic 
dispatch or unit commitment, with network constraints. In the simulation of small power 
systems, this can be achieved by running optimal power flow (OPF). However, it may become 
time-consuming and difficult if non-linear features need to be captured. Therefore, NGESO 
decided to break down the AC OPF functionalities and use boundary transfer constraints in 
lieu of full AC power flow constraints in the generators’ dispatch exercise, as depicted in 
Figure 3.1.  

 
Figure 3.1. System operational cost assessment process for NOA’s CBA 
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Traditionally, this boundary transfer constraint is set as a static value in each season of a year 
in NOA’s CBA study, while these static values are derived by scaling the boundary transfer 
volume assessed at winter peak or based on specific sensitivity studies. This is because the 
uncertainty of system operation was mainly embedded in demand side, while the generation 
portfolio is composed of large conventional power plants, which are geographically 
concentrated and dispatchable, therefore the maximum transfer and the most stressful 
period of the network should ideally happen in winter peak.  

However, the uncertainty and volatility of renewable energy brings the necessity of analysing 
multiple snapshots other than the peak. For instance, when there is high renewable 
generation and low demand in certain regions, boundaries may face voltage compliance 
issues. More importantly, the maximum transfer across a boundary may be induced by high 
output level of renewable generation on one side of the boundary which may not be 
coincident with the peak demand snapshot. In summary, it may be unclear, ex ante, under 
which system conditions and in which parts of the network thermal or voltage issues could 
arise. Therefore, as mentioned before, the SC team has introduced a probabilistic assessment 
method to generate hourly input profiles (i.e., wind, solar and demand) of a few year-round 
scenarios (currently 10) so that a probabilistic DC power flow10 analysis can be performed to 
understand various network conditions in tens of thousands of snapshots. 

In this section, we want to explore the answers of three questions in implementing 
probabilistic analysis for NGESO’s network planning: 

• What are the alternative approaches in assessing boundary capability under the 
conditions defined in SQSS? 

• Should the concept of “boundary” be kept in the cost-benefit analysis of NOA? 

• How to improve the integration of the technical study performed in ETYS and the 
economic analysis in NOA? 

3.1 Boundary capability assessment 

In this section, we would like to explore potential approaches that could complement current 
boundary capability assessment. Firstly, a literature review of probabilistic power flow 
research is performed. Then, we facilitate a discussion of the purpose of applying probabilistic 
power flow and what are the potential setpoints11 for boundary capability. Furthermore, we 
propose different sampling methods based on the current methodology to derive the value 
of several boundary capability setpoints mentioned above.  

3.1.1 Literature review of probabilistic power flow 

Researchers in power system sector have begun to investigate the application of probabilistic 
power flow (PPF) since 1970s [10], [11]. Initially, PPF was used to calculate the probability 

                                                      

10 “Power flow” and “load flow” are usually considered to be two interchangeable terms. The formally more 
correct “power flow” will be used in this report. 

11 “Setpoint” refers to the maximum power transfer across a specific boundary with the assumption of no 
network constraints (e.g., thermal, voltage and stability) violation. The value of the setpoint is applied to the 
boundary flow constraint in NOA’s CBA [4]. 
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distribution of power flows by assigning randomly generated load and generation profiles to 
each node of the network [11]. PPF has also been widely applied in power system planning 
[12], through the concept of composite reliability evaluation (CRE). The following gives a clear 
explanation of the difference between PPF and CRE [12]: 

• Probabilistic power flow: Assessment is performed under the current system 
condition before any remedial action. The simulation results can be used to map the 
probability density functions (PDFs) or the cumulative distribution functions (CDFs) of 
power flows, which can then be used to derive the value of some indices, such as the 
probability of a component operating at overloading level and probability of a busbar 
voltage exceeding its limit [12]. 

• Composite reliability evaluation (CRE): Assessment is executed after resolving the 
network problems through remedial actions. Typical Indices involve loss of load 
probability (LOLP), expected energy not supplied (EENS). 

The remedial actions mentioned above include network assets-based solutions and market-
based services, which may reflect operations such as active/reactive power output 
adjustment, load transfer or curtailment at bus level, tap changing and network 
reconfiguration, etc.  

The PPF analysis performed by SC team is deemed to be the middle ground between PPF and 
CRE, because the analysis has only included the assets-based solutions while flexibility 
provided by uncontracted resources should not be considered, such as redispatching a group 
of generators without explicitly stating the cost of utilising this service. This type of research 
problem is called “constrained probabilistic power flow” (CPPF). The attempt of solving the 
CPPF problem dates back to 1982 [13], when a multiple piecewise linear transformation was 
implemented to represent the finite voltage adjustment capability of transformer tap 
changers and generator excitation systems. Furthermore, CPPF has been applied to short-
term operational planning [14] and long-term network planning [15] by Hatziargyriou. In [14], 
[15], an iterative algorithm is proposed to adjust the control variables of the flexibility of 
network equipment so that the constrained variables (i.e., voltage and thermal level) fall back 
into the acceptable regions. This iterative algorithm is quite similar to the methodology 
considered in SC team’s probabilistic analysis, depicted in Figure 2.4. 

The latest researches on the topic of PPF are composed of three aspects: component outage 
modelling, chronological features of profiles and algorithm acceleration. With regard to 
component outage modelling, the researchers were mainly focusing on the impact of 
probabilistic generation unit and branch outage, while the analyses are performed with DC 
[16] or AC power flow approximation [17]. For the chronological features of the variables and 
input profiles, the concept of chronological power flow (CPF) was introduced to capture the 
time-varying feature of load [18] and renewable energy [19]. Last but not least, there are 
many papers of PPF algorithm acceleration, which focus on the linearisation of power flow 
constraints [15], [20] and improve the sampling techniques used in Monte Carlo simulation 
[21], [22].  

3.1.2 Static or dynamic boundary capability? 

Before discussing further the current methodology for boundary capability assessment, we 
would like to ponder over the meaning of the term “boundary transfer capability”. First of all, 
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let us clarify the purpose of applying probabilistic analysis, which can be summarised in the 
following two targets: 

1) Determine the boundary transfer capability (single value) to be used in NOA’s cost-

benefit analysis 

and/or 

2) Examine the network performance in handling boundary transfer snapshots 

(multiple cases) other than winter peak 

The methodology of probabilistic analysis needs to be dedicatedly customised in order to 
achieve the two targets in a unified way, and there is no need to say that a single transfer 
capability value might not be representative of all dispatch profiles over a relatively long 
period (e.g., a year or a season) in a system with high renewable integration. The rationale 
behind this argument is twofold:  

• “Boundary” could somehow be treated as a virtual transmission line which is 
aggregated from numerous network components with different ratings and 
configurations. Consequently, it is highly unlikely that a boundary has a linear 
operating envelope against the active power flow crossing it, especially when 
congestions may arise in regions across the boundary which might limit the transfer 
in a nonlinear fashion. Therefore, although it may be feasible to analytically determine 
the boundary transfer capability in any given snapshot other than winter peak, the 
criteria in selecting these snapshots require extensive clarification on the same basis 
as the winter peak defined in SQSS. The most crucial question would be: Does the 
network need to be absolutely secure in snapshots other than winter peak? If it is, then 
what do these snapshots look like? There could be a large variance of regional supply-
demand profiles and the setting of regional constraints. 

• Comparing with conventional generators, the output of RES is highly variable, and 
their connection points can be geographically diversified. These characteristics may 
stress a wider range of network components and consequently leads to more frequent 
unacceptable transfer snapshots. 

Based on the statement given above, it can be seen that there may be controversy in applying 
a boundary to represent network constraints. Therefore, a case study has been designed to 
use numerical examples to illustrate the drawback of boundary representation. A five bus 
system is depicted in Figure 3.2. In this system, G1/G2/G3/G4 represent conventional 
generators, while D1/D3/D4/D5 indicate connection points of electricity demand. C1 and C2 
represent network components such as transmission lines. Bn indicates a hypothetical 
boundary, which splits the system to two parts. For the sake of simplicity, only one demand 
node is defined on the lower side of boundary Bn, which represents the net demand. 
Boundary capability is defined as the maximum power transfer across Bn without overloading 
C1 and C2 in this case study. Comparing with the boundary capability derivation method 
designed by NGESO (as explained in 2.2.1), the constraints considered in this case study is 
simplified for illustration purpose. More specifically, not all security constraints are 
considered at below, as voltage constraints and contingency consideration have been ignored. 
More importantly, the limits of components should not only be considered on the crossing 
ones, such as C1 and C2 in Figure 3.2, but also the components inside a boundary, which is 
omitted in this five bus system. 
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Figure 3.2. Five bus system with boundary concept embedded 

The active power ratings of all components in this five bus system are shown in Figure 3.2, 
such as 500 MW for G1, 400 MW for G2 and 500 MW for C1, etc. A scenario “Snapshot(A)” is 
also designed with its demand profile shown in Figure 3.2, such as 300 MW in D1 and 400 
MW in D3, etc. Depending on the marginal cost12 of generators, there could be some different 
generation profiles simulated in economic dispatch and two of them are selected and 
displayed in Figure 3.3. Boundary validation is carried out by checking whether the boundary 
flow has exceeded the sum of crossing network components capacity 13 , while network 
validation is carried out based on flow through individual components. In Figure 3.3, 
comparing with “Dispatch.1”, “Dispatch.2” has a 200 MW output increase of G2 while the 
output level of G4 is decreased by 200 MW. The underlying assumption is that the marginal 
generation cost of G4 has increased to a level which is higher than G2. It can be noticed in the 
right subfigure of Figure 3.3 that “Dispatch.2” will experience a violation of network 
constraint. However, if we assume that the boundary capability is calculated as the sum of 
ratings of the components cross the boundary, it is still considered as feasible in the 
simulation of boundary flow-constrained economic dispatch, which is the same simulation 
performed by BID3 used in NOA’s CBA.  

               
Figure 3.3. Two potential dispatch profiles of five bus system in Snapshot A: Dispatch.1(left) and Dispatch.2 (right) 

                                                      

12 The generators’ marginal cost is not displayed here to simplify the discussion. 

13 This is an assumption to simplify the presentation of the concept. In many cases the boundary may be limited 
by a network component within the considered zones of the boundary but not a boundary crossing which results 
in a capability less than the sum of crossing components. 
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Based on the data shown in Figure 3.3, it can be insecure to dispatch the system with the 
boundary transfer capability derived from summing up the capacity of all network 
components. Therefore, the question to pose is: is there a robust value for boundary transfer 
capability? “Robust”, in this case, means that there is no network violation in any system 
dispatch profile generated by the boundary flow-constrained economic dispatch model. In 
this case, the static boundary transfer capability can be derived from (3.1), which is 
determined by the smallest rating of network components embedded in this boundary before 
crossing circuits. 

𝑃𝐵0 ≤ min(𝑃𝐶1, 𝑃𝐶2) (3.1) 

This principle of determining this static boundary capability based on the smallest rating 
would ensure the network operation being “absolutely secure”, but it could also seriously 
limit the energy transfer across the boundary. This would consequently result in higher 
constraint costs and even load shedding in the economic dispatch of CBA, which does not 
replicate the security constrained generation scheduling performed by system operators (i.e., 
NGESO) . For example, in the two dispatches shown in Figure 3.3, if the boundary transfer 
capability is set to 500 MW following this “smallest for all” principle, then the maximum 
transfer across this boundary would be limited to 500 MW and result a 200 MW supply 
shortage at D5, which would likely be covered by more expensive generators on the D5 side 
of the boundary (which is not drawn in this five bus system for simplicity). 

Other than the static one, the boundary capability can also be calculated dynamically based 
on current system conditions, such as generators’ marginal cost and output level and network 
components operating level, etc. For example, the dynamic boundary capability in 
“Dispatch.1” can be set to 800 MW, as G2 can still increase its output by 100 MW without 
overloading C1. In a new snapshot “Snapshot(B)”, the demand in D3 is decreased from 400 
MW to 300 MW comparing with “Snapshot(A)”, and the new dispatch profiles is shown as 
“Dispatch.3” in Figure 3.4. Then, the dynamic boundary capability14 can be increased from 
800 MW in “Snapshot(A)” to 900 MW in “Snapshot(B)”, because the generator output level 
of G2 can increase from 100 MW to 300 MW without overloading C1, if there is a demand 
increase in D5. 

               
Figure 3.4. Comparison of dispatch results between two snapshots: Dispatch.1 for Snapshot A(left) and Dispatch.3 for 
Snapshot B (right) 

                                                      

14 Once again, it needs to be pointed out that this boundary capability derivation has not considered all security 
constraints used by SC team in NOA and may overestimate the capability in practice. 
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In summary, the dynamic boundary transfer capability is highly dependent on the states of 
generators and demand. Therefore, it is difficult to build a model from typical predictive 
approaches (e.g. decision tree) to accurately calculate the boundary capability before running 
economic dispatch which determines the output levels of generators.   

The increasing penetration of renewable energy sources and distributed energy resources 
(DERs) could also complicate the calculation of dynamic boundary capability. To illustrate this, 
the five bus system listed in Figure 3.2 has been modified to reflect integration of variable 
renewable energy. Comparing with the system configuration given in Figure 3.2, wind 
generation plants have replaced the conventional generators G3 and G4. Additionally, we 
have reduced the demand level in D3, D4 and D5 to construct snapshots with high renewable 
generation and low demand (for example due to embedded generation). “Snapshot(C)” is 
characterised by a sum of renewable generation being higher than the local demand as shown 
in the left subfigure of Figure 3.5. In this case, the dynamic boundary capability is 1092 MW, 
which allows the total output of G1 and G2 to increase from 308 MW to 900 MW. In 
“Snapshot(D)”, the renewable generation G3 and G4 outputs are 360 MW and 9 MW as seen 
in the right subfigure of Figure 3.5. Consequently, D5 is heavily relied on G1 and G2 to supply 
its demand, and component C1 is overloaded which results network constraint violation in 
“Dispatch.5”. 

               
Figure 3.5. Five bus system configuration and two potential dispatch profiles (dynamic boundary capability with renewable 
generation) 

Based on the discussion of renewable integration given above, we can notice that the 
introduction of variable energy can create much more diverse dispatch profiles and 
consequently highly variable power flows across the network. There are two underlying 
factors which lead to this high level of diversity: 

• Variability: the output level of renewable generation varies much more than 
conventional generators and it is independent15 of the demand level given in the 
scenario. 

• Dispatch priority: The marginal generation cost of renewables is usually set to zero in 
the economic dispatch exercise, so that renewable energy is firstly dispatched 

                                                      

15 Although it needs to be highlighted that SC team tries to capture some correlation of renewable output and 
demand in the scenario generation process of probabilistic analysis. 
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without any curtailment16. For conventional generators, unless it is the marginal 
online generator17, the output level is usually set to either zero or maximum level in 
economic dispatch (without considering ancillary services provision – thus reducing 
the number of potential operating points and yielding less variable power flows. 

Renewable energy integration could also affect the calculation of the dynamic boundary 
transfer capability. In fact, the unused capacity of network components with only RES 
connection at sub-level cannot be counted as part of boundary transfer capability. For 
example, according to “Dispatch.4” in Figure 3.5, C2 has 592 MW used in its 600 MW capacity. 
However, the remaining 8 MW capacity cannot be considered in dynamic boundary transfer 
capability of this snapshot, because renewable generation cannot ramp up its output in this 
case.  

The calculation of boundary capability explained above is based on a simplified system with 
only five bus without taking contingencies into account. However, there could be tens or even 
hundreds of network components, generators and demand connections points for a power 
system in practice, as depicted in Figure 3.5, where a boundary is used to split the system and 
both sides of the boundary usually contain some generators, demands and network 
components. Therefore, an analytic method would be required to derive the dynamic 
boundary capability. Multi-parametric programming [23] could be used to derive a function 
of this boundary capability, which could use the marginal cost of generators, generator and 
network component capacity, dispatch profiles of generators, and component loading levels 
in order to dynamically determine the boundary transfer capability on a basis of snapshot by 
snapshot. This can be a potential improvement on boundary capability evaluation, which the 
SC team can pursue in the future. 

However, without resorting to multi-parametric analysis, it may still be possible to determine 
the dynamic boundary transfer capability in some scenarios by using appropriate sampling 
techniques. The assumption is that a large database of demand and renewable generation 
profiles would contain at least a few snapshots in which all network components are almost 
operating at maximum loading level without any constraint violation. Then, we can possibly 
assume that the boundary transfer volumes in those snapshots would be “optimistically” 
considered as the boundary transfer capability without the need for deriving the capability 
analytically. However, this boundary capability may only be valid (means no security 
constraints violation) when there is an even distribution of loading levels across different 
components. While in other snapshots with an asymmetrically distributed power transfer 
within the boundary, the violation of security constraints may still incur before the aggregated 
boundary transfer hitting the assumed capability. 

                                                      

16  The curtailment of renewable generation is not allowed in the technical study of ETYS since it is not 
straightforward to set the associated curtailment cost.  

17 The marginal generator represents the one with the highest accepted energy bid in the energy market at the 
given snapshot. 
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Figure 3.6. Illustration of boundary composition in a real power system  

3.1.3 “Probabilistic”, “standard-robust”, or “soft-robust”? 

Referring to the obligation defined in SQSS, the priority of probabilistic analysis should be put 
on examining the network performance on the periods of high boundary transfer other than 
winter peak. In this respect, Figure 3.7 depicts the distributions of boundary capability and 
probabilistic18 boundary transfer profiles (which can be acceptable or not).  

• The boundary capability refers to the dynamic one which can only be calculated via 
analytical methods, as explained in the last section. 

• The acceptable boundary transfer profile denotes the boundary transfer of a dispatch 
profile in a snapshot without network constraint violation, such as “Dispatch.1”, 
“Dispatch.3” and “Dispatch.4” in Figure 3.4 and Figure 3.5 respectively. 

• The unacceptable boundary transfer profile denotes the boundary transfer of a 
dispatch profile in a snapshot with at least one of the network constraints violated, 
such as “Dispatch.2” and “Dispatch.5” in Figure 3.3 and Figure 3.5. 

                                                      

18 In this context, the “probabilistic boundary transfer profiles” is referred to as a cluster of system dispatch 
profiles, which are derived from economic dispatch simulation without considering network constraints. 
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Figure 3.7. Illustration of boundary capability and transfer distributions in different GB network scenarios 

The distribution is plotted in the box plot format, which indicates the maximum/minimum 
value at the end of whisker and the 0.75 and 0.25 quantiles at top and bottom edges of the 
box19.  

In order to demonstrate the impact of renewable energy integration, we have designed three 
scenarios regarding network configurations in Figure 3.7. However, it needs to be clarified 
that the profiles shown in Figure 3.7 are hypothetical and for illustration only: 

1. Traditional GB network: The system has no or very limited renewable penetration 
and therefore the boundary transfer is determined by dispatching only conventional 
generators to meet demand. The uncertainty which results from the variation of 
boundary capability is originated from the distribution of demand profiles and the 
possible outage of network components. For example, if C1 in Figure 3.2 is broken 
down, then the boundary transfer capability is solely determined by the loading level 
of C2, which does not exceed 600 MW compared with the potential maximum 
capability of 1100 MW. 

2. Current GB network: The network system has a relatively higher renewable 
penetration level. In this case, the distribution range of boundary capability and 
boundary transfer profiles are both widened, because the variable output of RES 
could also lead to a higher level of uncertainty, as demonstrated in Figure 3.5. 

3. Future GB network: There are asset-based reinforcements in addition to the current 
GB network. 

As seen in Figure 3.7, in the traditional GB network, the values of boundary capability are 
narrowly varied because the main contribution of uncertainty are unexpected outages of 
system components, such as a transmission line being unavailable due to unplanned 
maintenance, etc. However, it is still worth mentioning that the boundary capability should 
not be a static number and it is largely dependent on the system conditions in network 
analysis (e.g., generator output level, contingency, etc.). In this network, the transfer 

                                                      

19 It should be noted that boundary transfer volume is usually bi-directional, and only the profiles of one 
direction (e.g. from North to South) is plotted in Figure 3.7. 
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capability is tested at the winter peak snapshot based on the procedure defined in SQSS, 
which refers to the most stressful period of a year, and therefore it is prudent to conclude 
that this single value of boundary transfer capability is robust to be used for constraining 
power flow in the network. 

The second scenario reflects the numerical distribution of boundary capability and transfer 
profiles in the current GB network. It can be noticed in Figure 3.7 that the distribution ranges 
of both capability and transfer profiles are widened compared to that of the traditional 
network. Most importantly, there are unacceptable boundary transfer profiles when 
network-based corrective actions are not sufficient to address constraints violations. In this 
case, reinforcing the network to eliminate all constraint violations might not be economical20 
in the CBA. This process balances the robustness requirement of the network relevant to the 
economic value created by adding reinforcement, which can be called “soft robust”. The 
principle of soft robust is to relax the standard notion of robustness, which was required to 
be absolutely robust under any designated conditions, so that the decision can be made 
according to different risk acceptance in terms of the assets performance across the 
uncertainty set [24]. However, it needs to be emphasised that the network should still 
maintain the capability to satisfy the winter peak, which fits the standard notion of technical 
robustness by guaranteeing the security of supply. 

The last scenario in Figure 3.7 shows the technical benefits of reinforcement, which would 
hypothetically increase the boundary capability region and consequently reduces the number 
of unacceptable transfer profiles. However, the current CBA methodology has only used the 
constraint costs reduction of reinforcement as the only index to quantitatively measure the 
benefits of reinforcement.  The winter peak test defined in SQSS is the only method to 
determine the technical performance of the network, which has only one indicator: secure or 
insecure. Therefore, we believe it is worth proposing analysis of more indices to evaluate 
network performance from different perspectives, such as the quantity of constrained power 
transfer, the duration of constraint violation and vulnerable network components 
performance, etc. The method to calculate these indices are further elaborated from 3.1.5.2 
to 3.1.8. 

If the designated purpose of probabilistic analysis is beyond the technical aspects (i.e., 
identifying the network performance in different scenarios), but ultimately to derive this 
boundary transfer capability for NOA’s CBA, then the current methodology may be good 
representation to the average network performance. The current methodology uses 
probabilistic approach to identify the “average” performance of the network by offsetting the 
“energy at risk” volume with “opportunities lost” volume, as explained in 2.2.2. However, we 
would like to suggest a potentially better approach by implementing redispatch and 
curtailment functions, which would allow a full system simulation with network constraints 
in NOA’s CBA, so that the potential inaccuracy of network modelling resulted by the boundary 
constraint can be avoided. More details on generator redispatch and renewable curtailment 
will be given in 3.2. 

                                                      

20As explained in sections 4.7-4.10 in SQSS [9], the statements suggest investment in transmission capacity if 
economically justified to secure for thermal, voltage and stability for conditions reasonably to be foreseen. 
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3.1.4 System operation modelling 

Before introducing any technique on improving sampling or performance evaluation, we 
would like to firstly discuss how to generate generation dispatch profiles. As explained in 2.2.2, 
the system dispatch profiles are currently generated with unit commitment. However, we 
recommend using economic dispatch to replace unit commitment. The reason of replacing 
UC with less constrained economic dispatch (ED) is that the focus of this analysis is to identify 
acceptable/unacceptable boundary transfer profiles based on network constraints (e.g., 
thermal, voltage and stability), while these constraints usually don’t have any intertemporal 
feature. It is also likely that the less constrained ED will generate more diversity in the 
boundary transfer flows, which can further stress-test the boundary definition. Therefore, 
using ED can accelerate the simulation substantially. More importantly, parallel computation 
can be used for the simulation without intertemporal constraints. Thus, the computation 
efficiency can be further improved by applying parallel computation, when it is generating 
unconstrained boundary transfers and using POUYA to label the transfers. 

3.1.5 Boundary capability sampling 

As explained in 3.1.3, using one number to define the boundary capability is rather 
ambiguous, as the transfer capability depends on the specific system conditions. The common 
methods or probabilistic power flow simulation can be generally classified into two types, 
namely, analytical methods and sampling methods (normally coupled with Monte Carlo 
simulation). Analytical methods usually use convolution techniques [25] and require different 
levels of simplifications, which may lead to an unclear performance quality [26]. Therefore, 
sampling techniques with Monte Carlo simulation is more widely accepted. With regard to 
sampling techniques, except for simple random sampling of Monte Carlo simulation, there 
are various variants that can improve the efficiency of sampling and consequently reduce the 
computational time, for example, importance sampling (IS) [21] and stratified sampling (e.g., 
Latin hypercube [22]).  

NGESO’s current methodology of probabilistic analysis is to use sampling methods to 
generate a large number of profiles and then determine  a value between the overlapping 
region of acceptable and unacceptable boundary transfers as probabilistic capability, as 
shown in Figure 3.8. It is probabilistic because it tries to balance, within the overlapping 
region, the benefit of capturing as high as possible acceptable flows against the risk of 
unacceptable flows. However, it may be convenient to explore further approaches to 
determining probabilistic capability setpoints. Here we explore the benefits of defining 
“marginal” and “robust” capabilities respectively as ways to evaluate a boundary’s capability. 
The marginal capability setpoint refers to the maximum acceptable transfer volume in the 
simulation, while the robust setpoint refers to the maximum acceptable transfer volume 
without any unacceptable dispatch profiles, as depicted in Figure 3.8. The calculation of these 
two points would indicate the potential range for setting boundary transfer capability, which 
allows further analysis to be carried out to select the most appropriate value for the capability 
depending on the criteria set by NGESO, such as the threshold of values for indices explained 
in 3.1.6. 
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Figure 3.8. Illustration of boundary capability potential setpoints 

3.1.5.1 Profiles clustering technique in NGESO probabilistic boundary capability calculation 

In the evaluation of boundary capability setpoint with probabilistic method, the first step is 
to generate weekly demand and renewable generation profiles from the corresponding PDFs. 
Then, these profiles are input into UC model to generate unconstrained network flows. The 
number of scenarios in the current methodology used by NGESO is ten, as mentioned in 
2.2.2.1. However, on the one hand, there is no mechanism in place to demonstrate whether 
ten scenarios are sufficient to cover the variability and uncertainty of boundary transfer 
profiles across the examined period (e.g. a year or a season). On the other hand, there is 
usually an upper limit of scenarios that can be run due to the availability of computational 
resources and time constraints of publishing ETYS. Therefore, it is necessary to indicate how 
to select the representative demand and renewable generation profiles, so that the 
“breakpoint” of acceptable and unacceptable transfer profiles (explained in 2.2.2.4) can be 
accurately captured. 

In order to improve the current approach, the K-means clustering method can be used to 
select representative profiles from a pre-generated database. The procedure is explained 
below: 

1. Define the time horizon of individual profile samples, which can e.g. be hourly, daily 
or weekly. Currently, the time horizon of profile is weekly in POUYA. 

2. Generate the candidate database for representative profiles selection. The number 
of profiles in the database needs to be sufficiently large (e.g., 10,000+). 

3. Determine the feature for K-means clustering and calculate the value of the feature 
at each snapshot (𝒕). Depending on the computational efficiency of the UC/ED and 
available computation resources, the feature could be the “net” demand profiles at 
each node (𝒏) of the network with or without the dispatch profiles of conventional 
generators and renewable energy curtailment. Two options of the feature are: 

a. Net demand before ED/UC: If it is deemed to be too computationally intensive 
to perform ED/UC for all profiles in the candidate database, then the net 
demand at each node would be calculated based on the load and solar and 
wind generation profiles as:  

𝑁𝐿(𝑡, 𝑛) = 𝐿𝑜𝑎𝑑(𝑡, 𝑛) −𝑊𝑖𝑛𝑑(𝑡, 𝑛) − 𝑆𝑜𝑙𝑎𝑟(𝑡, 𝑛) (3.2) 
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b. Net demand after ED/UC: If it is feasible to perform ED/UC for all profiles 
within the timeframe set by NGESO, then the net demand at each node based 
on the dispatch profiles can be calculated as (3.3), which considers the output 
of conventional generators (𝐺𝑒𝑛(𝑡, 𝑛) ) and wind and solar curtailments 
(𝜇𝑤𝑖𝑛𝑑/𝑠𝑜𝑙𝑎𝑟(𝑡, 𝑛)) in addition to (3.2): 

𝑁𝐿(𝑡, 𝑛) = 𝐿𝑜𝑎𝑑(𝑡, 𝑛) − (𝑊𝑖𝑛𝑑(𝑡, 𝑛) − 𝜇𝑤𝑖𝑛𝑑(𝑡, 𝑛))
− (𝑆𝑜𝑙𝑎𝑟(𝑡, 𝑛) − 𝜇𝑠𝑜𝑙𝑎𝑟(𝑡, 𝑛)) − 𝐺𝑒𝑛(𝑡, 𝑛) 

(3.3) 

4. Decide the number of scenarios to be run in the UC/ED and apply K-means clustering 
to select the representative profiles. For instance, if ten scenarios need to be run in 
the UC and the simulation time horizon is one week, the number of representative 
profiles is about 365 ÷ 7 × 10 ≈ 521. The procedure to carry out K-means clustering 
algorithm is explained as follows: 

a. The initial centre of clusters is randomly selected from the database before 
any iteration. The profile of the cluster 𝑖 centre is denoted as 𝐶𝑖; 

b. Each profile 𝑚  in the database is assigned to its “closest” cluster 𝑖 . The 
selection principle is based on the time-series value (e.g., net load) of the 
cluster centre profile and the selected database profile (𝑋𝑚); 

min
∀𝑖∈𝐼

‖𝐶𝑖 − 𝑋𝑚‖
2 (3.4) 

c. The centre of cluster 𝑖 is updated by calculating the average profile of all the 
database profiles assigned to this cluster (𝑥𝑙), while 𝑁𝐿𝑖  represents the number 
of samples assigned to cluster 𝑖; 

𝐶𝑖 =
1

𝑁𝐿𝑖
∑ 𝑋𝑙

𝑙∈𝐿𝑖
 (3.5) 

d. The steps b and c are repeated until the sum of “distances” between cluster 
centre and the samples assigned to this cluster have converged. The sum of 
distances is calculated as: 

𝐽 =∑ ∑ ‖𝐶𝑖 − 𝑋𝑙‖
2

𝑙∈𝐿𝑖𝑖∈𝐼
 (3.6) 

The convergence of K-means algorithm is determined by the following rule, 
where 𝜀 is a suitably small value (e.g., 0.1%). 

|𝐽(𝑟) − 𝐽(𝑟−1)|

|𝐽(𝑟)|
≤ 𝜀 (3.7) 

e. Finally, since each cluster usually does not represent the same number of 
samples in the database, as 𝑁𝐿𝑖  used in (3.5) would not be kept equal across 
all clusters, it may be convenient to calculate the weight of each profile and 
use the weight to scale up/down the boundary transfer frequency shown in 
Figure 2.5. The weight of each representative profiles (𝑤𝑖 ) can then be 
calculated with the number of samples assigned to one cluster (𝑁𝐿𝑖) and the 

total number of samples in the database (𝑁): 
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𝑤𝑖 =
𝑁𝐿𝑖

𝑁
× 100% (3.8) 

3.1.5.2 Stratified sampling for marginal and robust setpoints calculation  

The calculation of marginal and robust setpoints require the dispatch profiles with extreme 
transfer volumes to be generated. In this case, the K-means method explained is inapplicable, 
since the snapshots with extreme large transfer volumes may not be selected by an algorithm 
that naturally looks at identifying “average” conditions. The deterministic method explained 
in 2.2.1 uses a uniform scaling approach to artificially generate the dispatch profiles so that 
they can induce a higher boundary flow. The principle of this method is similar to stratified 
sampling. However, the dispatch profiles generated in this way lose the temporal and spatial 
correlation between renewable generation and demand in different areas of the system, and 
may consequently lead to an unrealistic system dispatch profile.  

The following methodology is then proposed to generate system dispatch profiles with high 
boundary transfer volumes, while preserving the spatial and temporal correlations between 
wind and solar outputs and demand. The steps of the proposed methodology are outlined 
below: 

1. Database generation: Use the PDFs of wind, solar and demand to generate a large 
number (e.g., 1 million) of snapshots. This procedure is consistent with the current 
scenario preparation work done by the SC team for probabilistic analysis. 

2. System operation modelling: Use economic dispatch to generate system dispatch 
profiles of all the snapshots. No boundary or network constraint is imposed at this 
stage. 

3. Boundary transfer profiles generation: Calculate the transfer volumes of all 
boundaries in each snapshot, and then sort snapshots by transfer segments. For 
example, if the transfer profile across the boundary B6 varies from -2130 to 4512 MW 
and the analysis segment is 100 MW, then we will put the snapshots with a transfer 
volume in the range of [−2150,−2050] into the - 2100 MW segment.  

4. Samples selection: Starting with the maximum positive/negative transfer segment, 
randomly select an appropriate number of snapshots (e.g., 1,000 snapshots21) from 
all the snapshots allocated to this segment. 

5. Network simulation and classification: Use POUYA to classify the dispatch profiles of 
all samples as either acceptable or unacceptable, depending on whether there is any 
violation of network constraints. Calculate the percentages of acceptable and 
unacceptable profiles in the samples at this segment.   

6. Repeat Steps 4 and 5 for all transfer volume segments at the selected boundary. 
7. Marginal setpoint searching: For selection of marginal boundary capability in positive 

flow profiles, start from the maximum positive segment and examine the percentage 

                                                      

21 We recommend the number of snapshots to be set to no less than 1000, so that when we apply a certain 
confidence margin (e.g., 1%) to determine the setpoint there would be at least 10 snapshots with 
acceptable/unacceptable profiles. In fact, for example, there would only be one acceptable/unacceptable 
snapshot required if the total number of snapshots is 100, which might be triggered by outliners. See also the 
last paragraph of 3.1.5.2. 
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of acceptable profiles at each segment. Select the first segment with a percentage of 
acceptable profiles being larger than 0% as the marginal capability setpoint. 

8. Robust setpoint searching: The initial segment would be 0 MW and examine the 
percentage of unacceptable profiles at each segment. Find the first segment with a 
percentage of unacceptable profiles being larger than 0% and set the robust capability 
setpoint as the segment before this one. 

9. Repeat Steps 7 and 8 for selecting negative boundary capability. 

The criteria of determining marginal and robust setpoints in Steps 8 and 9 can be flexible. For 
example, in the determination of the marginal capability setpoint, instead of selecting a 
segment where an acceptable profile is presented, we could increase the requirement by 
setting the criterion that the acceptable profiles percentage should be at least 1%. This would 
increase the confidence in selecting values of setpoints by removing outliers.  

The marginal and robust setpoints can be used as the upper and lower limits of selecting 
potential values for boundary transfer capability. Then, the reliability indices of each potential 
boundary setpoint can be calculated, which would inform the decision on determine the 
appropriate value to be applied in NOA’s CBA. The calculation of reliability indices is 
introduced in the following section 3.1.6.  

3.1.6 Reliability indices for robustness evaluation of capability setpoints 

In power system reliability assessment, there are various indices, such as loss of load 
probability (LOLP) and expected energy not supplied (EENS), which are used to assess the 
system performance as a whole. For boundary analysis it may be convenient to introduce 
similar indices to assess the performance at the boundary level and within the boundary (e.g., 
at the individual component level), as shown in Table 3.1. These indices may be used to 
indicate how the network handles the system dispatch profiles generated by economic 
dispatch, which shows the network performance under the standard notion of robustness22. 
Then, these indices can help to inform the level of robustness when setting the boundary 
transfer constraint to a given value. This would also consequently improve the confidence 
of applying these single value constraints to resemble the network constraints in a 
simplified way for cost-benefit analysis in NOA, as the indices quantify the risks of using 
static boundary constraints instead of network constraints in simulating system operation. 

Table 3.1. Reliability metrics for boundary transfer capability assessment 

Index Unit Analysis level 

Boundary congestion probability (BCP) % per year/season Boundary 

Boundary congested energy (BCE) MWh per 
year/season 

Boundary 

                                                      

22 The standard notion of robustness in this case would be that a network can handle a given system dispatch 
profile without any network constraint violation, which is like the technical requirement to “handle” the winter 
peak defined in SQSS. 
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Component over-loading frequency (COLF) hours per 
year/season 

Sub-boundary (network component) 

Component over-loading probability (COLP) % per year/season Sub-boundary (network component) 

First of all, we introduce two indices that provide direct indication of the boundary adequacy 
by mimicking the meaning of LOLP and EENS.  

The first one, called boundary congestion probability (BCP), represents the percentage of 
periods with unacceptable transfer in a year. More specifically, let 𝑏 represent the selected 
boundary number, and 𝑇𝐶−(𝑡, 𝑏, 𝑠)  and 𝑇𝐶+(𝑡, 𝑏, 𝑠)  the bi-directional transfer capability 
setpoints23 of the selected boundary 𝑏 in the portfolio 𝑠 at the given time 𝑡 of a year. These 
setpoints can be derived from different approaches, such as the deterministic method 
explained in 2.2.1, the probabilistic method elaborated in 2.2.2, and the stratified sampling 
method in 3.1.5.2. The values of these setpoints are kept same for all snapshots in each 
season following the current NOA methodology, as mentioned in 2.2, but this portfolio of 
seasonal setpoints can be adapted to a monthly one or even more dynamic values (i.e., 
depending on the demand and renewable output levels) to reflect the evolving system 
conditions. The transfer capability is used to constrain the active power flow (𝑃(𝑡, 𝑏, 𝑠)) across 
the boundary: 

𝑇𝐶−(𝑡, 𝑏, 𝑠) ≤ 𝑃(𝑡, 𝑏, 𝑠) ≤ 𝑇𝐶+(𝑡, 𝑏, 𝑠) (3.9) 

Each portfolio 𝑠 stores the combination of capability setpoints of all boundaries in a year-
round system dispatch simulation (i.e., obtained via a boundary flow-constrained UC or ED). 
If 𝑁𝑈(𝑏, 𝑠) and 𝑁𝐴(𝑏, 𝑠) refer to the number of snapshots with unacceptable and acceptable 
transfers, respectively, then the BCP index can be defined as:  

𝐵𝐶𝑃(𝑏, 𝑠) =
𝑁𝑈(𝑏, 𝑠)

𝑁𝐴(𝑏, 𝑠) + 𝑁𝑈(𝑏, 𝑠)
× 100% (3.10) 

The second index is called boundary congested energy (BCE), which is used to determine the 
amount of energy that cannot be transferred through a specific boundary due to network 
constraints; this is modelled as boundary transfer limit, as mentioned above. The calculation 
of BCE is shown in the following equation, which involves the boundary transfer volume in 
unconstrained ED/UC simulation ( 𝑃(𝑡, 𝑏, 0) ), the boundary transfer in boundary-flow 
constrained ED/UC simulation (𝑃(𝑡, 𝑏, 𝑠)), and simulation time resolution (∆). 

𝐵𝐶𝐸(𝑏, 𝑠) =∑|𝑃(𝑡, 𝑏, 0) − 𝑃(𝑡, 𝑏, 𝑠)| ∙

𝑇

𝑡=1

∆ (3.11) 

                                                      

23 All indices introduced in this section can be calculated based on unconstrained market dispatch profiles, and 
the value of these indices in this case may be used to indicate the upper limit of the indices, as the boundary 
flow is “maximised” without considering network constraints. In this case, the boundary flow constraint (3.9) is 
deactivated, which indicates 𝑇𝐶−(𝑡, 𝑏, 𝑠) = −∞ and 𝑇𝐶+(𝑡, 𝑏, 𝑠) =∞. 
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At the sub-boundary level, it may be sensible to carry out the assessment of the loading level 
of critical components. In this respect, there are two indices (COLF and COLP) introduced here 
that give the frequency and probability of the component operating above a certain loading 
level over a year, respectively. In this case, the number of over-loaded operational snapshots 
(𝑁𝑂𝐿(𝛼, 𝑐, 𝑏, 𝑠) ) is calculated with respect to the loading level ( 𝐿𝐿(𝑡, 𝑐, 𝑏, 𝑠) ) of the 
component 𝑐 at time step 𝑡, the corresponding component rating (𝐶𝑅(𝑐)), and a pre-defined 
overloading parameter (𝛼) and then counting the occurrence number of overloading in the 
year-round simulation, as depicted in (3.12). Then, the value of COLF and COLP can be 
calculated as illustrated below. 

𝑁𝑂𝐿(𝛼, 𝑐, 𝑏, 𝑠) =∑[𝐿𝐿(𝑡, 𝑐, 𝑏, 𝑠) ≥ (𝐶𝑅(𝑐) ∙ 𝛼)]

𝑇

𝑡=1

 (3.12) 

𝐶𝑂𝐿𝐹(𝛼, 𝑐, 𝑏, 𝑠) = 𝑁𝑂𝐿(𝛼, 𝑐, 𝑏, 𝑠) ∙ ∆ (3.13) 

𝐶𝑂𝐿𝑃(𝛼, 𝑐, 𝑏, 𝑠) =
𝑁𝑂𝐿(𝛼, 𝑐, 𝑏, 𝑠)

𝑁𝐴(𝑏, 𝑠) + 𝑁𝑈(𝑏, 𝑠)
 (3.14) 

Table 3.2 describes some hypothetical values 24  of boundary congestion probability and 
components overloading frequency. The values presented here are calculated with simulation 
results of one boundary capability setting, while multiple potential settings of boundary 
capability should be examined in order to select the most appropriate one for NOA’s CBA. 

Table 3.2. BCP and COLP of a boundary and top three overloading components in the boundary with a given transfer capability 
setting  

Target Boundary congestion 
probability (% per season) 

Component overloading probability (% per season) 

130% 150% 200% 

Boundary X 26% \ \ \  

Component x1 \ 20%  10%  3%  

Component x2 \  13%  8%  1%  

Component x3 \  7%  4.5%  0.5% 

3.1.7 Monte Carlo simulation convergence 

The reliability indices introduced above are calculated on an annual basis. However, the 
simulation result of one year cannot accurately indicate their values, as dispatch profiles of a 
single year may fail to cover all the system operating conditions normally encountered, 
especially for a planning exercise that include RES profiles. Therefore, it is necessary to use 
Monte Carlo simulation to generate the distribution of the indices, so that their mean value 

                                                      

24 These values of indices shown in Table 3.2 are only for illustration purpose and do not represent the simulation 
results generated in NOA. 
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can be derived. Hence, the question becomes how scenarios should be simulated to ensure 
MC simulation convergence in these studies. 

The classic criterion for sufficient number of samples in MC simulation is the ratio of the 
standard deviation of the sample mean of a selected index over the sample mean of the same 
index [27]. The calculation steps are displayed as the follows: 

Step 1: Calculate the mean value (𝐸𝑖(𝑋)) and the standard deviation (𝜎𝑖(𝑋)) of the index 
across all samples. 𝑋𝑖(𝑛)  can be either the boundary transfer capability or the 
reliability indices, such as BCF, BCE, COLF and COLP. 

𝐸𝑖(𝑋) =
1

𝑁
∙∑𝑋𝑖(𝑛)

𝑁

𝑛=1

 (3.15) 

𝜎𝑖(𝑋) = √
1

𝑁 − 1
∙ [∑𝑋𝑖(𝑛)2 − 𝑁 ∙ 𝐸𝑖(𝑋)2

𝑁

𝑛=1

] (3.16) 

Step 2: Determine the standard deviation of the sample mean of the index. 

𝜎𝑖[𝐸(𝑋)] =
𝜎𝑖(𝑋)

√𝑁
 (3.17) 

Step 3: Set up the stopping criterion for the MC simulation. This maximum allowed error is 
usually set to 5% [28]. 

𝜎𝑖[𝐸(𝑋)]

𝐸(𝑋)
≤ 𝜀 (3.18) 

A simple example is presented here to explain how the convergence rule is deployed in NOA 
for the assessment of proposed reliability (introduced in 3.1.8). Taking boundary congested 
energy (BCE) as the selected index 𝑋 in (3.15): 

1. Select the portfolio of seasonal capability setpoints and assign the setpoint to each 
boundary, for example in B5, the capability is set to ±5000 MW during summer, -4000 
MW and 3000 MW during winter, etc.  

2. Determine the initial number of scenarios to be run, such as 50 scenarios, while each 
scenario corresponds to a combination of demand and renewable generation profiles 
of a year. 

3. Perform two separate simulations of economic dispatch with and without boundary-
flow constraints in the same scenario so that the BCE in each scenario can be 
calculated by comparing two simulation results. 

4. Assuming that the values of BCE in B5 are ranging from 100 to 400 GWh, with a mean 
value of 250 GWh and a standard deviation of 100 GWh, following the calculation 
given in (3.15) and (3.16). Then the standard deviation of the sample mean is around 
14 GWh based on (3.17). 

5. Finally, the error can be calculated as 14/250 = 5.6%  and being larger than the 
maximum allowed error (5%). Therefore, additional scenarios should be run until the 
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error is smaller than 5%, and then the mean value of BCE in B5 can be selected as the 
representative value in this converged Monte Carlo simulation. 

Computation time may also be a critical factor to be considered other than hard convergence 
requirement25. As a suitable trade-off, the stopping criterion could be either the convergence 
having been reached following the calculation in (3.18) or the maximum number of scenarios 
having been simulated - whichever is satisfied first in the computation process. 

3.1.8 Risk metrics for reliability indices 

Once the convergence criterion mentioned above has been applied, a large number of 
scenarios are expected to be simulated, and the probability distribution of reliability indices 
in the results can be determined accordingly. It may then be valuable to also include some 
risk measurements, which can further enhance the network performance analysis. The risk 
metrics adopted here are value at risk (VaR) and conditional value at risk (CVaR) metrics [29].  

As explained in 3.1.3, there is a lot of uncertainties in the system which can result in different 
dispatch profiles. Therefore, the simulation result of one scenario may not accurately indicate 
the network performance in the future. VaR and CVaR could help to quantify the network 
performance in the worst circumstances. For example, let us take the probability distribution 
of BCE index calculated in (3.11) and depicted in Figure 3.9. It needs to be emphasised that 
the data plotted here is for illustration purpose and doesn’t indicate actual performance of 
GB network. If only one scenario is simulated, and the value of BCE is 100 GWh in this case, 
this value might just fall around the median value of the BCE distribution, while the network 
performance in the worst scenarios would not be represented. By using VaR with a 95% 𝛼, 
we can see in Figure 3.9 that the value at risk of BCE is 200 GWh. This can be interpreted as 
saying that “there is 5% of chance that the BCE would exceed 200 GWh in this year.” 
Furthermore, if we wanted to understand how the network performs in the 5% worst 
scenarios, the conditional value at risk could be calculated which reflects the average value 
of BCE in those worst scenarios. For instance, the CVaR for BCE is 220 GWh in Figure 3.9, 
which means the average value of BCE in the worst 5% scenarios is equal to 220 GWh. 

 
Figure 3.9. Illustration of risk metrics of boundary congested energy index 

                                                      

25 For example, the Australian Energy Market Operator (AEMO) uses 1000 scenarios for each reference year for 
their adequacy studies [53]. 
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In summary, this risk can be crucial for network planning, as network owners are not only 
interested in average performance of network assets (measured as mean value of metrics), 
but also the extreme circumstances (measured as VaR and CVaR). 

3.2 Redispatch and curtailment 

In ETYS, the constrained probabilistic power flow (CPPF) analysis is performed, as we have 
explained in 3.1.1. In this CPPF analysis, post-fault corrective actions are carried out in 
snapshots with a network constraint violation. However, post-fault corrective actions only 
include the network-based remedial actions (e.g., post-fault ratings, QB and FACTs) and 
procured commercial solutions. Therefore, the power flow profiles of a large number of 
snapshots may still be unacceptable, as these corrective actions could be insufficient to 
resolve network constraint violations. After the discussion with the experts in SC team, we 
understand that NGESO cannot rely on unconfirmed market solution, such as redispatch of 
generators and renewable curtailment, in long-term planning to assess boundary capability, 
because the availability and relevant service costs of these units are unknown. However, the 
numerical value of boundary capability could actually be better derived by introducing the 
options of redispatching conventional generators and curtailing renewable generation 
output.  

In fact, redispatch and renewable curtailment have the potential to bring the network to 
operate on a secure operating envelope from an unacceptable (exceeding the predetermined 
boundary limit) dispatch point, with an intrinsic potential to expand, by means of corrective 
actions, the secure boundary transfer limit in first place.  

Below, a system operation snapshot is designed to show some numerical results of redispatch 
and renewable curtailment functionalities. The five bus system introduced in Figure 3.2 is 
applied here and its configuration in this case study is slightly modified that among four 
generators, only G4 is the renewable plant as seen in Figure 3.10 and Figure 3.11. 
“Snapshot(E)” is designed with high output of G4 and high demand at D5, so that we can show 
a boundary transfer profile being close to the hypothetically maximum boundary transfer 
capability, which is the sum of capacity of network components directly connected to D5. 
Again, it is important to highlight that NGESO has applied a much more sophisticated process 
to determine boundary transfer capability in NOA as explained in section 2.2, while this “sum 
of ratings” approach applied here is to simplify the case study and allows reader to 
understand the pros and cons of using boundary constrained economic dispatch to determine 
system operational cost.  

“Dispatch.6” shows the simulation result of economic dispatch and C2 is overloaded which 
results a violation of network constraints, as shown in the left subfigure of Figure 3.10. 
However, if redispatch is allowed, then the output level of G3 can be reduced by 50 MW while 
G2’s output increases 50 MW, which is named as “Dispatch.7” in the right subfigure of Figure 
3.10. On the other hand, instead of redispatching G3, the overloading issue of C2 could also 
be resolved by curtailing the output level of renewable plant G4. This new dispatch profile is 
marked as “Dispatch.8” in the right subfigure of Figure 3.11. By doing redispatch and 
curtailment, an acceptable dispatch profile with 1000 MW boundary transfer can be 
generated, which is close to its dynamic boundary transfer capability 1100 MW at this 
snapshot.  
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Figure 3.10. Comparison of dispatch results of Snapshot E: Dispatch.6 (original) and Dispatch.7 (conventional generator 
redispatched). 

               
Figure 3.11. Comparison of dispatch results of Snapshot E: Dispatch.6 (original) and Dispatch.8 (renewable output curtailed). 

This transition from “unacceptable” to “acceptable” dispatch profiles by using redispatch and 
curtailment is depicted in Figure 3.12. We have highlighted in Figure 3.12 that the marginal 
capability setpoint can be higher when it is derived from redispatch and curtailment profiles. 

 
Figure 3.12. The distribution of acceptable and unacceptable transfer profiles before and after applying redispatch 

Although both redispatch and curtailment have the capability of converting an unacceptable 
profile into an acceptable one, as seen in “Dispatch.7” and “Dispatch.8”, it may be unclear 
which one of them should be used a priori. Therefore, a mathematical formulation of 
redispatch and curtailment model is explained below. We think that integrating this model 
into NOA’s CBA can substantially improve the accuracy and consistency of system operating 
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cost assessment. The integrated framework of economic dispatch and OPF for assessing 
constraint costs is shown in Figure 3.13.  

 
Figure 3.13. Integrated framework of economic dispatch and OPF for constraint costs assessment 

The current methodology of NOA still uses static boundary transfer capability for each season, 
which is firstly assessed in SQSS winter peak condition and then scaled down to fit into other 
seasons. The economic dispatch in NOA’s CBA can be treated as an optimisation which has 
implicitly considered the redispatch function in accommodating the boundary transfer 
constraints. In this integrated framework shown in Figure 3.13, POUYA and/or BID3 would 
need to gain the capability of performing redispatch, so that the constraint costs of each 
snapshots could be independently and accurately evaluated, instead of applying a predefined 
boundary capability to limit flow across boundaries. 

Modelling of redispatch may be performed via a simple DC power flow approximation and 
linear programming (LP) based corrective actions. Redispatched generation profiles could be 
for example generated by following these steps [19]: 

Step 1: Perform economic dispatch without network constraints to retrieve market-based 
power flows. 

Step 2: Run DC power flow on the unconstrained dispatch profiles or use machine learning 
model (e.g., deep neural network (DNN) – see further below) to identify 
unacceptable transfer profiles. 

Step 3: Add DC power flow network constraints and remedial action options to an economic 
dispatch program. In this optimisation program, the objective function is set to 
minimise the deviation of the redispatch operating points (𝑃𝑟(𝑔, 𝑡)) from the original 
dispatch points (𝑃𝑜(𝑔, 𝑡)) by adding a penalty factor (𝜌(𝑔)), also considering a load 
curtailment penalty (𝛿). 
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𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = min∑{∑[𝑃𝑜(𝑔, 𝑡) − 𝑃𝑟(𝑔, 𝑡)] ∙ 𝜌(𝑔)

𝐺

𝑔=1

𝑇

𝑡=1

+ [∑𝑃𝑜(𝑔, 𝑡)

𝐺

𝑔=1

−∑𝑃𝑟(𝑔, 𝑡)

𝐺

𝑔=1

] ∙ 𝛿} 

(3.19) 

By using a penalty factor, this application also gives us the flexibility of adding redispatch cost 
of different generators to the boundary capability modelling, which is not fully captured in 
NOA’s CBA. This would also allow a more flexible modelling of commercial solutions (e.g., de-
loading, intertrip of generators, etc.), potentially also accounting for availability fee and 
utilisation fee in a more accurate way. 

3.3 Commercial solutions integration 

On the one hand, it needs to be acknowledged that there are certain differences between 
redispatch and commercial solutions on several aspects, such as procurement process, which 
are procured through balancing mechanism (BM) and Pathfinder projects respectively. On the 
other hand, there are also some similarities of their purposes, which is to adjust the power 
output of generators to address the violation of network constraints in system operation. 
Therefore, the integration of redispatch into NOA’s CBA may enable a better assessment of 
commercial solutions, so that its economic benefits on constraint costs reduction can be 
derived in a manner that is consistent with the evaluation of the network-based options 
proposed by TOs. In fact, the current evaluation process of commercial solutions is planned 
to run through Pathfinder projects, which run separately from NOA. The benefit of the 
conceptual26 commercial solutions would be firstly evaluated in the ETYS/NOA annual cycle. 
This evaluation process of commercial solutions exhibits a few drawbacks, such as: 

• Lack of a clear definition of the criteria to select which part of the network that 
requires the support of commercial solutions most urgently. 

• Lack of consistent backgrounds (i.e., demand and renewable generation profiles in 
next 20 years) and system operating configurations (i.e., using BID3 or system 
historical service price) to evaluate constraint costs reduction by commercial 
solutions in comparison with network-based options proposed by TOs. 

Eventually, commercial solutions should be treated as an alternative to network-based assets, 
given their potential (flexibility) benefits from having more flexible contract periods and faster 
deploy times relative to large assets such as transmission lines. 

As a further point, keeping the boundary concept in BID3 may have hindered the effort of 
accurately modelling the technical performance of commercial solutions in NOA’s CBA, which 
is usually adjusted at component level while benefits are assessed at boundary level instead 
of whole system level. That’s why the recommendation made in 3.2 is to integrate the 

                                                      

26 “Conceptual” here refers to solutions which are not analysed for a specific limiting issue, available assets or 
certain market provider. 
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network model into NOA’s CBA, so that commercial solutions performance in operation can 
be derived in a consistent way instead of relying on historical results. 

A potential framework to integrate commercial solutions into the current NOA’s CBA could 
be based on a two-phase adjustment. 

In the first phase, the procedure of evaluating economic benefits of commercial solutions 
explained as the following:  

1. Generate unconstrained market flow: In addition to the boundary-constrained 
economic dispatch simulated with BID3, use BID3 to run an economic dispatch without 
boundary flow constraint.  

2. Identify congested boundary: With both constrained and unconstrained dispatch 
profiles, calculate the BCE index defined in 3.1.6 (the aggregated value of BCE over the 
planning horizon (e.g. 5-10 years) should be calculated). Derive and rank the values of 
aggregated BCE for different boundaries, to determine the boundary which has a 
largest congestion issue. 

3. Determine technical requirements: By comparing the boundary flow between 
constrained and unconstrained profiles at each snapshot, plot the frequency and 
magnitude of congestion as a PDF. By selecting the mean value of the PDF and 
frequency of activation of specific commercial solutions, derive the capacity 
requirement and the number of annual utilisation times. 

4. Request for information to stakeholders: Send the technical requirements evaluated 
above to stakeholders and request the proposal of commercial solutions with a similar 
feature, such as storages, batteries, etc.  

5. Final evaluation: After receiving the cost (i.e., availability and utilisation fees) of 
commercial solutions sent by stakeholders, rerun BID3 with a reinforced boundary 
constraint considering commercial solutions. After deriving the system operating 
costs in the simulations with/without commercial solutions, determine the constraint 
cost reduction brought by this commercial solution and compare with options of TOs 
on a consistent basis. 

In the second phase, we want to enable an analysis for commercial solutions at network 
component level. This analysis would rely on the simulation results generated in CBA after 
integrating DC OPF and redispatch function into the current CBA methodology, as explained 
in Figure 3.13. The implementation instruction of redispatch with DC OPF at component level 
is elaborated in 3.2. Then, instead of calculating the BCE at step 2 above, we can calculate the 
generator output deviations from its optimal position and the component overloading level 
(in economic dispatch) to give the indication of the most frequently overloaded components. 
Moreover, the sum of output deviation in the planning horizon can be calculated and ranked 
to determine which generators are most frequently redispatched to provide active or reactive 
power support27, which gives potential opportunities for introducing commercial solutions at 
these locations of the network. The request for information and final evaluation shall be the 
same as the procedure explained in the first phase. 

                                                      

27  The inclusion of commercial solution for voltage control or reactive power support would require the 
capability of running AC OPF. NGESO is currently developing POUYA’s capability of running AC power flow in 
another research project, which would not be discussed here. 
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3.4 Machine learning applications in ETYS and NOA 

3.4.1 Literature review of ML applications in power system 

Machine learning and artificial intelligence have grown in interest over the last few years 
owing to the their potential operational applications [30]–[34]. This is because ML and AI can 
usually give a result with a much shorter computational time in comparison with traditional 
optimisation approaches, which may also have nonconvex features and require substantial 
computational resources besides feasibility issues [35], [36].  

For example, Refs. [31], [33], [34] have used machine learning techniques to predict different 
outages and contingencies under N-1 and N-2 criteria. There are also many publications which 
have applied ML to classify the feasible and infeasible dispatch profiles with the help of 
physics-informed techniques to reduce the prediction errors [35], [37]–[39]. Moreover, 
power flows in lines and generators dispatch points in AC OPF problems can also be predicted 
by using ML, as demonstrated in [30] and [40]. 

However, most if not all ML power system applications have focused on short-term operation, 
while the long-term expansion planning problem is rarely addressed.  

This may be caused by the lack of database of potential solutions in planning problems, which 
is often required for training the ML model. This lack of data profiles has actually also affected 
research on short-term operation, leading to considering generation of such databases as a 
research topic per se [38]. 

In the contest of this work, we propose the following two ideas to explore potential 
applications of ML in support of the ETYS and NOA processes: 

• Use ML model to classify system dispatch profiles as acceptable or unacceptable 
depending on whether there is a violation of network constraints, as already been 
mentioned in Section 3.2. By using ML model instead of running power flow analysis 
with POUYA, the computational time can be substantially reduced. Although there 
may be minor error on the classification with ML model, as seen in [39], [41], it is 
expected that this will be less critical in long-term planning relative to short-term 
operations, as failing to identify few unacceptable snapshots will only have limited 
impact on the total constraint costs. 

• Build a ML model to automatically scan the information of options submitted by TOs 
and explore the potential optimal combinations of options. Traditionally, the 
scanning process is part of the Challenge and Review process, which needs to identify 
potentially “abnormal” data of options submitted by TOs. For instance, Network 
Development (ND) teams need to check whether the boundary transfer capability of 
an option has a significant difference relative to the value of the same option 
submitted in last NOA. Currently, this work is done manually. However, if the 
application is solely used for cross-comparison of the information of same options 
submitted in two adjacent NOA, it seems less necessary to use ML model, as data 
extraction and cross-comparison can be done with a simple program. The main ML 
application could in fact be to project the boundary capability of combination of 
options that have not been examined through simulation. The ND teams could then 
use this projected boundary capabilities to decide whether it is necessary to run the 
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technical analysis of some potentially promising combinations, which have not been 
recommended previously.  

In the following subsections, we will elaborate on how to potentially implement these two 
ML models. 

3.4.2 Neural network for security assessment 

A possible implementation approach for the first ML model could be found in [39], [41], using 
a deep neural network (DNN) structure. An example is depicted in Figure 3.14, which 
demonstrates how secure and insecure dispatch profiles may be split under different network 
topologies. For instance, only one numerical constraint is needed to split the secure and 
insecure dispatch profiles when the outputs of two generators are concentrated to 
component C1, as shown in Figure 3.14. However, if the generators are connected to network 
components individually, as seen in the right side of Figure 3.14, then two numerical 
constraints would be presented to split the secure and insecure dispatch profiles.  

     
Figure 3.14. secure and insecure operating regions under different network topologies 

In practice, there are many more components and generators in the network, which would 
require a cluster of constraints to differentiate the secure and insecure dispatch profiles. That 
is why we would like to propose to use deep neural networks to derive these constraints and 
give classification result of network security assessment in a relatively quick way. 

In this DNN model, the input features would be the output level of generators across the 
system, while the output would be a classification label, to determine whether this dispatch 
profile is acceptable or unacceptable (or say secure or insecure). The model developing 
procedure is elaborated below: 

1. Training dataset preparation: The DNN model requires a large number of training 
samples28 (e.g., 10,000 [35]) to derive the parameters of the neural network. In this 
case, a large number of dispatch profiles have already been generated in order to 

                                                      

28 A training sample indicates a snapshot of generation dispatch profiles and the verification result of network 
constraints (through simulation in POUYA or Power Factory), which can be acceptable or unacceptable.  
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calculate reliability indices and risk metrics explained in 3.1.6 and 3.1.8. These profiles, 
which would have been classified by Power Factory, could then be used for DNN 
training purposes. 

2. Common network topology: One thing to emphasise is that the network topology and 
contingency settings need to be same for the training dataset and the profile 
classification in NOA’s CBA. That means a DNN model needs to be trained separately 
for every network topology in the future years with each reinforcement options.  

3. Future use: As explained above, the DNN model can only be used in the same network 
topology. If there is no change to the base network topology in the NOA of last two 
years, then the DNN model for base network classification could be repeatedly used. 

In summary, instead of using Power Factory to classify each dispatch profiles, a DNN tool 
could be a promising alternative to accelerate the processing time of the integrated approach 
of DC OPF and redispatch shown in Figure 3.13. 

Further to security assessment, there is a potential application of ML for options verification 
and recommendation. This will be elaborated in the following subsection. 

3.4.3 Neural network model for “challenge and review” of reinforcement options 

As mentioned above, this model is developed for two purposes: 

• Verify the information submitted by TOs; 

• Explore potentially valuable combinations of options which are not included in the 
current candidate list of NOA. 

The recommend configuration of this ML model would be deep neural network: a typical DNN 
structure is depicted in Figure 3.15. The reason for using a deep neural network instead of a 
linear regression model is the possibility to exploit the feature of hidden layers to simulate 
the XOR or XNOR logics. These two logics are required in NOA, as there are reinforcement 
options which cannot exist simultaneously (mutually exclusive) and options which must 
happen together. The relationship between options have been elaborated in section 2.3 of 
the first report of this project [7]. 

  
Figure 3.15. DNN structure for “challenge and review” of reinforcement options 
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As shown in Figure 3.15, the input features of the DNN would be the commitment state of 
each reinforcement option in the network and the selected year for boundary capability 
assessment. The output feature would be the boundary capability.  

A neural network model can generally be considered as an aggregated linear regression 
model with the following equation: 

𝑤 × 𝑋 + 𝑏 = 𝑌 (3.20) 

In this application, the physical meaning of these parameters and variables are explained 
below: 

• 𝑏 can be treated as the boundary transfer capability without any reinforcement.   

• 𝑋 is the commitment state of each option and the selected year 

• 𝑤 mostly corresponds to the boundary capability contribution of individual options, 
while the input unit corresponding to the selected year represents the boundary 
capability contribution of approved reinforcement options. 

• 𝑌 is the transfer capability of boundary. 

A multi-task learning approach could be adopted [42], which means that the output layer 
would have multiple activation units corresponding to each boundary in the GB network. The 
reason of using multitask learning is that this would allow the boundary capability to be 
derived from a similar DNN configuration, also saving time to train individual DNNs for each 
boundary separately. With regards to the activation function, a rectified linear unit (ReLU) 
function could be used for the hidden layers, while applying the identity function to output 
layer. The reason for using identity function is that we want the model to output the boundary 
capability, which is a MW value. 

Before inputting the training dataset into DNN model, the information of options (i.e., 
reinforcement options list and corresponding boundary transfer capability) stored in the 
database used in the NOA CBA needs to be restructured to fit the training purpose. The input 
and output of training dataset should be restructured as shown in Table 3.3 and Table 3.4 
respectively. As mentioned in Figure 2.2, SC team only evaluates the boundary capability in 
network models of Year-1/3/5/7/10 and assumes the boundary in unexamined year has the 
same transfer capability as the previous year. For example, only Year-1 and Year 3 networks 
are examined, and boundary capability in Year-2 is kept the same as Year-1, while Year-4 is 
kept the same as Year-3. However, we need to replicate the boundary transfer capability data 
and use them explicitly on a yearly basis for training purposes, so that the DNN would not 
somehow wrongly infer a linear increase of boundary capability between Year 1 and 3.  

Table 3.3. Database structure of DNN model input features  

Profile 
No. 

Reinforcement options commitment state Year 

FBRE LBRE BLN2 E4DC … TURC  

1 0 0 0 0 … 0 2019 

2 1 0 0 0 … 0 2023 

… 
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XXXX 0 0 0 1 … 1 2028 

Table 3.4. Database structure of DNN model output  

Case No. Boundary 

B0 B1 B2E B2F … LE1 

1 1401 3099 3557 3557 … 7600 

2 1500 3099 3557 3557 … 7600 

…       

The procedure to apply this model in Challenge and Review process would be: 

1. Use verified options from last NOA to train a DNN model, named as DNN-1. 
2. Apply DNN-1 to screen and verify the information submitted by TOs. The verification 

criterion would be that the difference of boundary capability of a same option or 
combination of options in two NOAs does not exceed a specified threshold 𝜀 (e.g., 5%). 
A small variation can be understandable due to the scenario update. 

3. Use verified options submitted to this year’s NOA to train a new DNN, called DNN-2. 
4. Apply DNN-2 to simulate the projected boundary capability of options combinations 

that would not have been explored in the current NOA and decide if this combination 
features certain interest to be further simulated in POUYA in order to explore its 
technical performance. 

It needs to be emphasised that the effectiveness of this DNN model for boundary capability 
projection is subject to the availability and complexity of the training dataset, which allows 
the DNN to properly “understand” the boundary capability contribution from reinforcement 
options. 

3.5 Concluding remarks 

In this section, we have discussed how to improve the methodology of ETYS and NOA in terms 
of technical modelling in capturing network performance and opportunities in a system with 
increasing penetration of renewable energy, distributed energy resources, and more non-
network solutions that are available. Ten recommendations made in this section are 
summarised in Table 3.5 with their importance, benefits and complexity of implementation 
explained.  

The potential improvement proposed can, amongst others, also be used to integrate the 
evaluation of different types of reinforcement options (e.g. network-based and commercial 
solutions) in the same framework, so that the constraint costs reduction contributed by 
reinforcement can be calculated in a more accurate and consistent way. Furthermore, the 
work introduced aims to create a better understanding of the short-term uncertainty faced 
by transmission network from the system operational perspective. How long-term 
uncertainties can be better addressed via flexible investment measures in network planning 
is discussed in the following section. 
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Table 3.5. Summary of technical modelling recommendations 
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Action: Use economic dispatch to replace unit commitment in POUYA’s system 
operation modelling  

Importance 
highlight: 

Improving the computational efficiency of POUYA would allow more snapshots 
to be examined in its Monte Carlo simulation within the timeframe of NOA 
preparation, which would lead to a better security assessment and boundary 
capability estimation. 

Benefits on 
decision 
making: 

• Reduce the computation time of POUYA and allow parallel 
computation; 

• The generation profiles simulated by economic dispatch may be more 
diversified, which allows further stress-test on network security. 

Implementation 
complexity: 

Relatively quick. Deactivate intertemporal constraints of generators and 
reducing the optimisation timescale of UC from one week to single snapshot. 
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Action: Use K-means clustering method to evaluate setpoint for boundary capability 
with probabilistic analysis 

Importance 
highlight: 

The clustering technique would ensure the snapshots applied in security 
assessment are more representative in terms of power flow across the network. 

Benefits on 
decision 
making: 

The boundary capability derived from the security assessment of representative 
snapshots would more accurately reflect the benefits of reinforcement options 
and enhance the credibility of NOA’s CBA. 

Implementation 
complexity: 

Implementation is underway based on the discussion with SC team. 
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Action: Use stratified sampling to evaluate marginal and robust setpoints for 
boundary capability 

Importance 
highlight: 

The marginal and robust setpoints indicate the upper and lower limits of 
boundary capability respectively. More candidates of setpoints within this range 
can be tested in order to select the most appropriate one for NOA’s CBA. 

Benefits on 
decision 
making: 

By defining the potential range of the setpoint, multi-criteria analysis can be 
applied to select the most appropriate value for boundary capability of various 
reinforcement options and better informs NOA’s CBA. 

Implementation 
complexity: 

Requiring extra time to implement stratified sampling. System modelling and 
security assessment are kept same. 
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Action: Introduce reliability indices for robustness evaluation of boundary capability 
setpoints 

Importance 
highlight: 

Current methodologies of NOA and ETYS lack the method to quantitatively 
describe the performance of boundary other than mapping energy transfers. 
Indices can be applied to quantify the performance of boundary and critical 
components at sub-boundary level.  
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Benefits on 
decision 
making: 

• Identify vulnerable boundaries and overloaded network components 
within the boundary; 

• Improve the confidence of selecting a specific value for seasonal 
boundary transfer capability. 

Implementation 
complexity: 

Result analysis with data mining technique is required to pick up vulnerable 
components and subsequently calculate the corresponding reliability indices. 
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Action: Set up convergence criterion in POUYA’s Monte Carlo simulation 

Importance 
highlight: 

Criterion needs to be set up to determine how many scenarios are sufficient so 
that the boundary capability and reliability indices are derived from a converged 
simulation result. 

Benefits on 
decision 
making: 

Provide a clear criterion on the number of scenarios to be simulated instead of 
a static number, which is 10 in the existing probabilistic analysis. 

Implementation 
complexity: 

No modelling work is required. Only extra simulation tasks need to be 
performed in order to satisfy the convergence criterion. 
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Action: Introduce risk metrics (value at risk and conditional value at risk) for reliability 
indices 

Importance 
highlight: 

Risk metrics can be used to enhance the evaluation of network performance, 
which provides an illustration of the probability distribution of reliability indices. 

Benefits on 
decision 
making: 

Understand the network performance in the worst circumstance, which may 
also be used to determine the network reinforcement requirement rather than 
based on the network “average” performance. 

Implementation 
complexity: 

No extra modelling work is required. Once the convergence criterion is set up, a 
large number of scenarios are expected to be simulated, which allows the 
probability distribution of indices to be mapped and risk metrics to be derived. 
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Action: Implement redispatch and curtailment functions in POUYA and BID3 

Importance 
highlight: 

Currently, redispatch and renewable curtailment are implicitly modelled 
through the static boundary-transfer constraint in BID3, while unacceptable 
boundary transfer profiles classified by POUYA cannot be altered (through 
redispatch) to indicate system operation under network congestion conditions. 
The modelling of redispatch and curtailment would allow the simulation to 
mimic the system operation in practice and consequently improve the boundary 
transfer capability evaluation. 

Benefits on 
decision 
making: 

• POUYA’s result would be all acceptable ones in terms of network 
security assessment through redispatch, which can be used to indicate 
the boundary transfer limits in various circumstances. 

• BID3 can discard the boundary-transfer constraints and allow a more 
accurate estimation of the technical benefits of reinforcement options 
in NOA’s CBA. 

Implementation 
complexity: 

Requiring the linearisation of network constraints and the modelling of optimal 
power flow in POUYA and BID3, which can be time-consuming. 
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Action: Streamline the development of commercial solutions 

Importance 
highlight: 

NOA Pathfinder projects are independently proceeded, which may lack 
consistent scenarios and system operation modelling comparing with NOA’s 
CBA. 

Benefits on 
decision 
making: 

By creating a consistent evaluation framework for commercial solutions and 
network-based reinforcement, a better combination of short to medium-term 
options (i.e., commercial solutions) and long-term options (i.e., network-based 
reinforcement) can be explored for network development scheme. 

Implementation 
complexity: 

The adjustment is more focused on the project execution process rather than 
technical modelling.  
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Action: Neural network model for network security assessment 

Importance 
highlight: 

Network security assessment is a very time-consuming task due to its non-
linearity of security constraints. Neural network model provides a way to quickly 
classify the dispatch profiles as acceptable or unacceptable by learning from the 
simulation results of POUYA. 

Benefits on 
decision 
making: 

By reducing the time spent on network security assessment, more 
reinforcement options can be analysed which enhances the credibility of NOA’s 
CBA. 

Implementation 
complexity: 

Extra work is required to set up input data preparation by selecting and 
organising the simulation results of POUYA during boundary capability 
evaluation process and then train the neural network. 
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Action: Neural network model for “Challenge and Review” of reinforcement options 

Importance 
highlight: 

The “Challenge and Review” process is currently carried out by experts in 
NGESO. This process is highly labour-intensive and may not be able to perform a 
systematic examination of all the options submitted by TOs within the limited 
time given for NOA preparation. A model which can automatically perform this 
task can significantly enhance “Challenge and Review” process and improve 
work efficiency. 

Benefits on 
decision 
making: 

• Systematically identify the discrepancy of the boundary capability of 
different options submitted by TOs; 

• Explore potential combination of reinforcement options which was not 
included in TOs original submission. 

Implementation 
complexity: 

Extra work is required to set up input data preparation based on the 
information submitted by TOs and then train the neural network. 
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4 Investment Flexibility 

This section discusses how to capture more flexibility from the reinforcement options. Three 
main aspects are covered: an introduction on elements affecting investment flexibility, theory 
on investment flexibility, and current practices of National Grid and potential improvements 
to capture more flexibility. 

4.1 Introduction 

Let’s start by providing a clear definition for investment flexibility. The literature has 
addressed this topic in multiple instances [43], [44] referring to concepts like investment 
flexibility and compromise solutions in a variety of ways, but without a clear and unified 
definition. Based on these elements we will use the concept of flexible investment options to 
refer to investments options (single or multiple assets) whose technical, locational, 
operational and/or procurement characteristics allow them to act as compromise solutions 
capable to adapt and provide value in a wide variety of scenarios, thus intrinsically hedging 
against planning uncertainty; these scenarios can describe changes to endogenous system 
characteristics (e.g. demand growth, renewable energy variability, etc) and/or to exogenous 
system characteristics (e.g. technological development, market conditions, etc).  

The assessment of the flexibility associated to a given investment options must be conducted 
by means of a suitable stochastic methodology [43], [45], [46], where decisions are made 
here-and-now assuming uncertainty regarding the unfolding of the future (e.g. start the 
procurement of permits to deploy a transmission line) and other decisions are made in the 
future when more information is available; these decisions are known as wait-and-see 
decisions (e.g. start construction, decisions on transfers through a high voltage direct current 
(HVDC) link, etc.). The more wait-and-see decisions are available for an investment option, 
the more flexible the option is. In some cases, the benefits associated to the flexibility of an 
option can be compensated by high investment and/or operation costs, which can render one 
particular investment strategy more or less attractive depending on the pool of options 
against which it is simultaneously being compared. Without a suitable stochastic 
methodology it is not possible to effectively discriminate the best investment plan from a 
flexibility point of view. 

Before we delve into the specific aspects of the methodology to select flexible transmission 
options let’s step back for a moment. National Grid ESO’s main task is to provide 
recommendations on a set of reinforcement options proposed by the Transmission Owners. 
However, this objective is getting increasingly entwined with new challenges and options in 
the operation of power systems, represented in this case, for example, by the objectives of 
the pathfinder projects, which look to provide novel solutions for the management of secure 
transfers through the boundaries of the system, as discussed in the previous sections. This 
reality is putting pressure on the methodological aspects to assess the technical 
characteristics of the reinforcement options, potentially novel approaches to deal with the 
factors that affect the secure transfer of power, and the cost-benefit analysis that takes all 
these options and has to produce a decision based on a pair formed by one metric and one 
indicator, as it was discussed in [7]; examples of this are stochastic decisions, which rely on 
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the Manhattan metric and costs as the indicator, and least worst regret decisions (LWR), 
which use the Chebyshev metric and regrets as the indicator. 

 
Figure 4.1. Interaction of the solution space associated with options proposed by transmission owners (Space TO), (a) the 
global set of solutions (Space U) and (b) the global set of transmission solutions (Space T) 

Figure 4.1 presents the different spaces of search that National Grid ESO is currently facing. 
The set of options presented by the TOs is labelled Space TO and is depicted as the area 
bounded by the dashed line that encloses all the strategies presented by the TOs. Space TO is 
not a continuous set, it is composed by a limited number of strategies, considering that each 
reinforcement presented by the TOs has well-defined characteristics (e.g., the capacity of a 
proposed transmission line reinforcement is fixed). The universe of potential solutions, 
labelled Space U, is much larger than Space TO. It can be approximated as a continuous set 
considering all the different combination of solutions (and possible sizes), like transmission, 
storage, demand response, intertrips, etc. If only transmission options are considered, but all 
potential combinations of transmission links and sizes, which we call Space T, it would still be 
much larger than Space TO, and although still disjoint, it would be also much denser. Space T 
would offer strategies like SA and SB, which can be missed by the TOs because they can only 
search a finite amount of options and, more importantly, they are blind to the options being 
considered by other TOs and therefore by networked effects (impacts and benefits) that only 
a system-level view can capture. 

The increasing number of options available to provide solutions for the reliable operation of 
power systems is pushing National Grid ESO to step into the realm of decisions linked to what 
can be described as a system architect approach (equivalent to exploring the search Space U 
in Figure 4.1. 

In the coming sections the focus is put on addressing the search of solutions within Space TO; 
however, it is relevant to highlight that current state-of-the-art models could efficiently 
search a much larger portion of Space U, conducting a CBA analysis with optimality assurance 
and risk aversion control through risk constrained stochastic approaches using DC power flow 
[43], [47]. For example, one of the implementations based on [43] – for an investment horizon 
of 20 years sampled every 5 years and the operation represented by typical weeks within 
each year, with pool of investment options including transmission, pumped-storage and 
battery energy storage systems – yielding a combination of over 3x1012 investment strategies 
in a given year, currently takes around 1-2 days to find the optimal solution depending on 
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various modelling considerations and available computational resources (in that case ca. 100 
parallel CPUs). This type of approach could be of interest for extensions of the ETYS, which 
would allow narrowing down the critical links and, for instance, needed storage solutions for 
the subsequent analyses conducted by the TOs and the pathfinder project teams. The same 
models can be used to narrow down the interesting areas of Space T, if co-optimising for other 
technologies is not in scope. Also, by using only the set of reinforcements presented by the 
TOs, the Space TO can be explored using the same models to find the optimal strategy using 
the information available on the impact on boundary capability for different combinations of 
reinforcements, either under deterministic or stochastic conditions.  

For the sake of clarity, in the coming sections we will call this approach based on suitable 
stochastic methods to search the space the integrated approach; on the other hand, we will 
refer to NGESO CBA methodology as the sequential approach. Sequential approaches 
correspond to methods that contain a series of steps that aim to find an optimal solution by 
reducing the search space through heuristics, which may or may not contain probabilistic 
considerations. 

4.2 Introductory example 

To allow for a simpler way to examine all the elements involved in capturing investment 
flexibility, in this section we introduce a small example that will provide context and highlight 
the relevant factors affecting flexible investment decisions. 

4.2.1 Single snapshot case 

Let’s consider the 3-bus system presented in Figure 4.2, which consists of one generator 
connected to bus 1 and two loads, one connected to bus 2 and the other to bus 3. The 
scenarios are given by the values of the load at bus 2 (2 per unit [pu] in scenario 1, 1pu in 
scenario 2) and bus 3 (1pu in scenario 1, 2pu in scenario 2). Initially, line 1-2 and line 1-3 have 
a transfer capacity of 1.5pu, and there is no line between nodes 2 and 3. The generator can 
produce energy at a cost of $1 (per unit of output per unit of time). Value of lost load is $30. 
The investment options are 3: reconductoring existing lines to increase transfer capacity in 
0.5pu at a cost of $4 and to build line 1-3, at a cost of $6, resulting in a transfer capacity of 
0.5pu between bus 2 and 3. For the sake of simplicity we ignore Kirchhoff’s voltage law; while 
this approximation has substantial effects on the physical results, however it helps to readily 
understand the principles that we are trying to depict through this example. 



64 

 

 

 
Figure 4.2. 3-bus system 

Let’s start by solving the deterministic cases. As the network is completely symmetrical, the 
solutions are also symmetrical, as shown in Figure 4.3. The objective function (OF) of the 
problem, shown in (4.1), considers the investment and operation costs: 

𝑂𝐹 = [4 ∙ (𝑖𝑙12 + 𝑖𝑙13) + 6 ∙ 𝑖𝑙23]⏞                
Investment cost

+ [1 ∙ 𝑔 + 30 ∙ (𝑙𝑠2 + 𝑙𝑠3)]⏞              
Operation cost

 
(4.1) 

In scenario 1 it is beneficial to proceed with the reconductoring of line 1-2, hence increasing 
the capacity of that link to cover all the demand in node 2 and avoid any load shedding. 
Similarly, in scenario 2 the optimal deterministic decision is to reinforce line 1-3 to cover the 
demand on bus 3. Investing in line 2-3, which is more expensive than reconductoring any of 
the lines, naturally yields a worse result. Not investing in any line produces load shedding in 
both scenarios, , and investing in the reconductoring of the wrong line produces the highest 
cost (investment and load shedding). 

 
 Figure 4.3. Deterministic results 

It is important to highlight that the combination of investment decisions in this particular 
example will always yield substantially higher costs with no additional benefits, so they are 
not analysed. This simplification can only be done because of the size and simplicity of the 
example; formally, 7 different investment combinations should be analysed29 on top of not 
investing in new assets.  

                                                      

29 Considering the effect of Kirchhoff’s voltage law in this example would completely change the dynamic of the 
decisions, because in order to unlock transfer capacity in one link, additional transfer capacity would need to be 
available in the other links. 

2 3

1

g

ls2 ls3

il12 il13

il23

FM12 FM13

D2
D3

Parameters:
FM12: maximum flow line 12 
FM13: maximum flow line 13 
D2: demand bus 2
D3: demand bus 3 

Value:
[1.5pu]
[1.5pu]
[SC1: 2pu SC2: 1pu]
[SC1: 1pu SC2: 2pu]

Variables:
g: generation bus 1 
ls2: load shedding bus 2 
ls3: load shedding bus 3 
il12: reconductor line 12, binary
il13: reconductor line 13, binary
il23: build line 13, binary

Associated information:
[unconstrained, $1 pu output pu time]
[unconstrained, $30 pu lost pu time]
[unconstrained, $30 pu lost pu time]
[FM12+0.5pu, $4]
[FM13+0.5pu, $4]
[FM23=0.5pu, $6]
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The “stochastic” version of this problem, from formal mathematical programming 
approaches, solves the same scenarios simultaneously, looking to making investment 
decisions that can find “compromise results” across the multiple possible futures [43], [44]. 
The stochastic problem is modelled as a two-stage problem, where the investment decisions 
are the same as before, but the operation is modelled separately for each scenario (variable 
superscript denotes scenario in the objective function (4.2), where the subscript S stands for 
“stochastic”). We assume equal probabilities for both scenarios. 

𝑂𝐹𝑆 = [4 ∙ (𝑖𝑙12 + 𝑖𝑙13) + 6 ∙ 𝑖𝑙23]
⏞                

Investment cost

+ 0.5 [1 ∙ 𝑔1 + 30 ∙ (𝑙𝑠2
1 + 𝑙𝑠3

1)]⏞                
Operation cost scenario 1

+ 0.5 [1 ∙ 𝑔2 + 30 ∙ (𝑙𝑠2
2 + 𝑙𝑠3

2)]⏞                
Operation cost scenario 2

 

(4.2) 

When solving this problem, the solution is now to build line 2-3, which allows covering both 
loads in both scenarios, as shown in Figure 4.4. This is by definition and as from practical 
evidence a “compromise” solution, which, as it can be seen, may also be completely different 
from what was suggested by the solution of each individual deterministic scenario. This 
compromise solution also intuitively corresponds to the concept of “flexibility” as it allows 
navigating across uncertain scenarios simultaneously. 

 
Figure 4.4. Stochastic Results 

This example shows the value of considering all potential scenarios in a single problem and 
assessing potential compromise solution, which emerges from a stochastic version of the 
original (scenario-based, deterministic) problem formulation. A few interesting points can be 
highlighted further based on this example. 

Firstly, the integer nature of this problem does not allow for an “average” solution based on 
the independent solutions of the deterministic cases30. Also, even if such a solution were to 
be feasible, it would not necessarily produce a solution close to the optimal compromise 
solution obtained by a formal stochastic approach [48], [49].  

Second, the integer nature of the investment decisions in the transmission expansion 
problem31 generates, in principle, the possibility to recreate the stochastic solution by ideally 

                                                      

30 It should be noted that the solutions identified under the “probabilistic” setting discussed in our previous 
report [7] belong to this category. 

31 At least in the version emerging from the NOA context, where all decision variables are integer and referring 
to investment in specific assets at a given year. Mathematically, this corresponds to an integer programming 
problem and can be solved with various techniques, for example dynamic programming approaches. A more 
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listing all the deterministic solutions for the different investment options. Such a 
comprehensive analysis of all options could then be carried out by running an exhaustive 
search of all ex-post combinations of deterministic solutions, to work out the best 
compromise option. In our simple example, this can be checked for the case of the stochastic 
option by inspecting the deterministic results in the tables of Figure 4.3 and comparing them 
with the stochastic results in Figure 4.4. It is possible to see that the stochastic operation in 
each scenario is the same as the deterministic operation for the corresponding scenario. Since 
the investment option is the same in both deterministic scenarios, and the sum of 
probabilities equals 1, the results will match. However, this, again, is only true in the case of 
integer investment decisions, because it is possible to list all potential solutions. Also, 
although possible in this example, listing all conceivable investment options can be infeasible 
in most real cases due to the combinatorial explosion of number of possible integer decisions, 
in particular if the investment options are more complex: this is for example the case when 
the investment decisions can be made not only now but in the future too and also when a 
given investment decision can be retracted or delayed.  

The key takeaway of this simple example is that it highlights how critical is the role of 
compromise solutions in the presence of uncertainty; this, in turn, reinforces the relevance 
of the way information is used to arrive at a decision, which will be discussed in the following 
sections. Also, the advantage of having the possibility to list all independent solutions 
associated to the integer nature of the decisions in the TEP is limited to the practical capacity 
to effectively cover all options. Any attempt to proceed by listing a subset of options without 
a clear understanding of what is being left out of the analysis can lead to substantial loss of 
efficiency associated to the decision that will be made. This aspect is also covered in the 
following sections.  

4.2.2 Multiperiod extension 

Let us now extend the example of the previous section to a multiperiod version. The aim is to 
compare the fundamental elements of the NGESO’s CBA methodology to highlight its 
strengths and weaknesses. Both the system structure and the investment options will be the 
same as before; the changes only impact the profiles of demand in both scenarios, which in 
this case are represented with the numbers presented in Figure 4.5. 

 
Figure 4.5. Demand profiles for the multiperiod example 

An additional assumption is made on the reinforcements: their earliest in-service date (EISD) 
for all reinforcements is in period 2. A yearly discount rate is considered (to reflect the fact 

                                                      

general version of the problem would envisage continuous decision variables too (e.g., the size of investment), 
which would make it impossible to exhaustively search the solution space and calling for more sophisticated 
approaches to solve the corresponding mixed-integer programming problem.  

Period 1 2 3

Demand (pu) D2 D3 D2 D3 D2 D3

Scenario 1 1.5 1.5 2 1 2.5 1.5

Scenario 2 1 1.5 1 2 1.5 2.5
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that it may be desirable to delay projects that do not create immediate benefit as much as 
possible) and we assume each period represents the operation of one year.  

Let’s proceed following NOA CBA methodology (see [7] for further details), that is, let’s find 
the optimal path of reinforcement for each scenario. There is no need to do calculations, since 
period 1 does not need any reinforcement (also, no reinforcement may be implemented due 
to EISD), period 2 has already been studied, and period 3 requires all reinforcements in both 
scenarios, as shown in Figure 4.6a. 

 
Figure 4.6. Operation of the system in period 3 and deterministic optimal deployment 

Considering the time value of money, the optimal way to deploy the reinforcements for 
Scenario 1 is to have reinforcement 1-2 ready in period 2 and then all reinforcements in place 
in period 3. For Scenario 2 the optimal deployment path includes reinforcement 1-3 in period 
2, and all reinforcements in period 3. Following the current CBA methodology, the next step 
would require determining what reinforcements enter the LWR stage, that is, those that are 
critical (optimal entry date equals EISD) only in some scenarios. This is presented in Figure 
4.6b; reinforcements 1-2 and 1-3 are critical in only one scenario each, hence the LWR 
strategies would correspond to the permutation of reinforcement 1-2 and reinforcement 1-
3, while fixing reinforcement 2-3 in the period that the deterministic assessment determined 
for each scenario, which in both scenarios is period 3. 

We do not present here the specific results for the permutation exercise, but it is possible to 
see from the outcomes presented in Figure 4.6 that proceeding reinforcement 2-3 now would 
make it available for period 2, yielding optimality. Then, reinforcements 1-2 and 1-3 can be 
proceeded in Period 2 for them to be available in Period 3. Hence, the overall optimal LWR 
strategy is to proceed reinforcement 2-3 and hold reinforcements 1-2 and 1-3. 

The difference in the results stem from the step in which the set of options that enter the 
LWR process is reduced by selecting the reinforcements that are critical in only some of the 
deterministic scenarios. As a matter of fact, reducing the set of reinforcements in any way 
may always result in preventing the best possible assessment of a specific combination of 
reinforcements that could act as a compromise solution, which is exactly what we seek as 
investment flexibility. 

4.3 Seeking investment flexibility 

Flexibility in an investment problem is affected by aspects that can be gathered under two 
main categories, both being closely connected with the way the problem is modelled. These 
categories are information accessibility and information use. To understand them, it may be 
convenient to provide some examples. 
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From the perspective of increased accessibility to information, the decision maker can 
consider larger sets of investment options (technical characteristics, costs, etc.), more 
detailed description of each investment options or, among other things, a larger set of 
information about the characteristic of future scenarios to model the operation as detailed 
as possible. A larger set of investment options will provide flexibility by simply giving more 
solution alternatives and potential paths; more information about each investment options 
will create flexibility by enabling actions within a project that before were not described; a 
more ample data set to describe operation in each scenario will potentially allow capturing 
more value from each investment option. Each of these options will unlock flexibility, but this 
naturally will come at the cost of dealing with a larger problem.  

On the other hand, there is the information use aspect. Considering that the information sets 
are fixed for a given problem, the way in which the decision maker structures the decision 
process will impact how the investment options will allow hedging against the future. 
Considering independent deterministic scenarios to drive decisions will produce 
fundamentally different solutions compared to strategies that combine the view of the future 
across scenarios to make decisions. Also, the latter approach is not unique; there is always a 
possibility to make the decision less often or consider different degrees of uncertainty as 
deeper into the future a given decision is. Clearly, the more often a decision can be made, or 
the more complex the structure of uncertainty and the decision-making problem are, the 
heavier a problem will result – to be traded off with gain in flexibility. 

These two information related aspects interact in different ways depending on the selected 
methodology (e.g., deterministic vs stochastic, risk awareness, etc.). The methodologies are 
structured as algorithms that make decisions based on different decision indicators (e.g., 
costs, regrets) and metrics (Manhattan, Euclidean, Chebyshev, etc.); each methodology will 
use the accessible information in different ways.  

In general, the main idea behind the concept of investment flexibility is to find solutions 
whose characteristics can produce/capture value in a broad range of scenarios, hence 
hedging more effectively against an uncertain future. Although both information categories 
are relevant, the impact of the accessibility aspect is more natural to understand than the 
usage aspect; in the following sections we mainly focus on explaining the methodological 
aspects of improved information usage in the transmission expansion problem. 

From a deterministic point of view, it is relatively straightforward to understand the process 
of finding a set of candidate investments whose impact in relieving system constraints is such 
that the cost savings will balance out the associated investment costs. If this process is 
repeated for each independent scenario, the decision maker can use the information to select 
a unique investment set that will guarantee a certain behaviour across scenarios given a 
certain rule. This approach can be improved by finding compromise solutions that will hedge 
better against the different uncertain scenarios under consideration; below we set forth to 
present a brief example to depict this concept and its implications on the optimality of 
decisions. 

The example in section 4.2 shows how certain reinforcements can act as compromise 
solutions. While these reinforcements can be overlooked due to their relatively higher costs 
or their low NPV performance in a deterministic context, they exhibit the capacity to capture 
value in multiple scenarios, which is exactly what a flexible investment option is. On the other 
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hand, some of these options may simply not be present at all in the decision set coming from 
the deterministic solutions pool. 

Figure 4.7 presents the fundamental aspects that interact and impact the capacity to capture 
flexibility when making investment decisions.  

  
Figure 4.7. Factors influencing investment flexibility 

Representation of the system operation refers to the level of details in the operation of the 
system that are being captured to drive the evaluation of the investment alternatives. This 
aspect of the process is captured to a great extent in the analysis run by the TOs in the 
evaluation of the boundary capability for each combination of reinforcements (see Sections 
2 and 3 of this report for details of different aspects). Some elements are captured by the 
information used to represent the system within the decision-making framework, for 
instance, the refinement of the sampling of demand and renewable energy availability. This 
section of the report will not touch on this particular subject because the principle is simple: 
higher precision in the representation of the operation will help harnessing more value when 
adding different investment options.  

Decision making methodology corresponds to the set of metrics, indicators, risk measures, 
algorithms and processes used to incorporate all the information about the system behaviour, 
representation of the future and decisions structure to determine what investments to 
proceed. A large part of the discussion about methodological aspects was presented on the 
first report [7]; algorithmic aspects about current practices and potential improvements in 
that regard are covered in this report. 

Investment decisions structure includes all the decision stages associated to the process of 
deploying a new asset and the set that results from combining all the reinforcement options 
and their associated decisions. Basically, it allows departing from the idea of modelling a 
single decision of the type build/not build towards a real options-like approach that considers 
project deferrals, resizing, etc [45]. This approach naturally provides more flexibility to the 
decision-making process because it allows modifying the nature of the project dynamically as 
uncertainty unfolds. It, however, imposes challenges from the point of view of information 
accessibility and modelling. 

Representation of the future refers to how the future and uncertainties are 
represented/considered in order to identify the optimal development path for the system. 
The central task in this regard corresponds to identifying the relevant uncertain variables in 
the long-term and build a representation of the future; to keep all the relevant correlations 
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within the system adequately represented the usual approach corresponds to define a finite 
set of scenarios to describe the possible futures. The uncertainty set will then interact with 
the methodological considerations and the decisions structure, yielding different stages of 
decisions (e.g. decision tree for stochastic optimisation) depending on the assumption about 
how uncertainty can unfold as time passes. 

This section addresses two of the topics that influence the amount of flexibility that each 
investment option can provide in an evolving environment characterised by high 
uncertainties. First, we discuss the concepts associated to the structure of investment 
decision in transmission and then we focus on discussing aspects associated with the 
representation of the future. 

4.3.1 Investment decisions structure 

In general, the decision process behind the deployment of new assets in transmission focuses 
on incorporating lots of detail on the operation representation and some information 
associated with future scenarios. This already represents a substantial challenge, so many 
simplifications are done when it comes to how projects are implemented and managed, and 
how risk is incorporated. As described in [50] the decision-making process can be modelled 
under one of the following approaches: 
 

• Deterministic approach 
The discounted cash flows are used to determine what to do with an investment 
option considering a binary decision on the execution of the project. The project will 
continue to exist even if it is reporting negative cashflow in the future and the risks 
are incorporated in the discount rates used to value future income and expenditures. 
 

• Scenario approach  
The uncertain variables that can have a substantial effect on the behaviour of the 
system are used to create structured accounts of possible futures of operation of the 
system/market, also known as scenarios. These scenarios are then explored through 
different approaches to assess the value of the different investment options and drive 
decisions considering their performance across possible futures. The approaches 
include sensitivity analysis, probabilistic assessment, application of risk measures, 
and decisions analyses which can consider decision trees and more elaborate metrics 
and indicators to join the information of multiple scenarios and produce a single 
decision on each candidate that maximises expected benefits. 
 

• Real option approach  
Real Options theory was developed in the context of financial option pricing and was 
specifically tailored to deal with uncertainty when evaluating investment options; its 
purpose is to assess the viability of engineering projects like transmission assets. This 
approach can be very useful in the context of power system development as it 
enables to identify possible flexible investment strategies to cope with uncertainties. 
Its value resides in the development of adaptive paths of investment decisions that 
minimise the exposure to risk, by exploiting the fact that decision-makers will 
incorporate new information as uncertainty unfolds and will take actions accordingly. 
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However, Real Options theory was created in the context of financial theory and the 
underlying assumptions to work with analytical solutions are often not fully or at all 
applicable when dealing with engineering problems. The application of this theory in 
the context of transmission investment should then aim to “mimic” the optionality 
concept through mathematical programming techniques that can be applied to 
engineering problems; this should be done in order to develop flexibility in the 
decisions for each investment project so that its development can be “optimally” 
(flexibly) adjusted as uncertainty unfolds. From the perspective of centralised 
transmission planning this approach can represent an information 
access/management challenge, because the planner needs to have access to all the 
options and associated costs faced by the transmission owners. 

 
The real options faced by an engineering project are defer, time to build, alter operating scale, 
abandon, switch, growth, and multiple interacting options. Below is a brief summary of each 
RO as presented in [50]. 

▪ Defer: This is the most common RO found in the literature. They concern the 
alternative to delay investment decisions with the objective of gathering additional 
information to better assess the projects.  

▪ Time to build: This is the alternative to build a project in stages; each stage involving 
a small investment and the reassessment of the project. This provides an option to 
abandon the project before the whole capital needed to build it has been 
compromised.  

▪ Alter operating scale: This is the alternative to expand the project in favourable 
scenarios and reduce or abandon it in negative scenarios. These RO usually involve 
supplementary investments in additional capacity, or the sale of franchises and 
infrastructure.  

▪ Abandon: This is the option to abandon a project and sell its infrastructure if the 
project is resulting in significant losses.  

▪ Switch: This is the alternative to change the technology or size of the project.  
▪ Growth: Growth options involve the alternative to invest in an R&D or pilot project 

meant to secure resources or provide information about the project’s environment. 
These assets can facilitate investment decisions in additional interrelated projects. In 
other words, the growth option is the option to begin investments with a small project 
that can grow into one or more larger projects.  

▪ Multiple interacting options: This is the alternative of analysing several RO in 
combination instead of assessing each RO independently. In practice, projects might 
possess several available RO that affect each other. In other words, in real life 
applications, the combined value of the RO might defer from the sum of each option 
assessed in isolation. Accordingly, assessing RO and their interactions is deemed 
convenient for most projects in real life applications. 

It is relevant to highlight that the theory usually used to conduct real options valuation of 
financial assets cannot be directly applied to the assessment of options in transmission 
project [45], [50]; in this context, the real options aspect corresponds to the design flexibility 
that is considered and represented within the decision framework. The issue lies in the 
effective identification of real options in an engineering project at every point in time; the set 
of options can be effectively not countable which renders the theory not applicable. 
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When the set of decisions associated to each reinforcement option has been defined, then 
the real set of decisions that the decision maker faces corresponds to the combination of all 
decisions for all project in each time step when a decision can be made. This set is very 
relevant, because it corresponds to the foundation of the different decision spaces presented 
in Figure 4.1. Reducing the decision space in any way can reduce the capacity of the 
underlying methodology to find the most flexible investment path.  

4.3.2 Representation of the future 

The discussion on how much information and how to use information is paramount to 
understand investment flexibility. Both aspects enter in direct conflict with the time and 
resources necessary to account for them, so it is essential to identify what information is really 
useful to make a decision and how to use it to reduce costs and risks. 

In the previous section we presented a way to achieve more flexibility in the investment 
problem by expanding the number of decisions associated to each of the reinforcements 
under consideration. Here we present elements associated to how to model the decision 
process under uncertainty in order to capture flexibility in the form of compromise solutions. 

The theory of decision making under uncertainty [48] divides the set of decisions into two 
groups. There is a number of decisions taken before uncertainty unfolds (also known as here-
and-now decisions), which are called first-stage decisions; there are also decisions that have 
to be taken after uncertainty unfolds which correspond to the second-stage decisions (or 
wait-and-see decisions). These different variables are clearly represented in the example of 
Section 4.2, with investment decisions being the first stage decisions, and the operation of 
the system (generator outputs, line flows, load shedding) correspond to second-stage 
decisions (one independent set of decisions for each scenario). The stages represent states of 
uncertainty, they have nothing to do with the periods that are being considered within the 
problem. For instance, first-stage decisions can cover many different periods (for instance 
years) that are all included in the second stage, as presented in Figure 4.8. 

 
Figure 4.8. Two-stage investment problem. 

The two-stage approach can be adequate to represent decisions facing uncertainty, but it can 
be insufficient to capture all the investment flexibilities that exist in a real problem like the 
TEP with the consideration of real options, where the future can unfold in different paths not 
only in the beginning of the problem, but also at different points in the future. In this sense, 
the CBA methodology considers the single-year proceed/delay decisions for the subset of 
reinforcements that are permuted as the here-and-now decisions. All other decisions coming 
from the deterministic assessment are wait and see decisions that are made assuming that 
the uncertainty has already unfolded.  
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It is relevant to highlight that the two-stage approach supports making decisions for multiple 
years, which is something that the NOA CBA methodology could readily incorporate to make 
the decisions more flexible. Considering more scenarios within the two-stage approach would 
also help in identifying compromise solutions that can adapt to a broader range of scenarios. 
However, the two-stage approach is incapable of incorporating the reality that these 
decisions will be updated as the future evolves. 

In order to increase the flexibility of an investment option, the model has to incorporate the 
reality that decisions will be updated as the future unfolds; this is achieved by incorporating  
several decision stages, each of them assuming certainty of the path followed up to the point 
where decisions are updated and also modelling the future ahead at that point. The two-stage 
model can therefore be extended to a so-called multistage decision process; such an 
approach will allow explicit implementation of further levels of decision (e.g. real options) as 
uncertainty unfolds to capture flexibility of different projects (e.g. stop one project and 
implement another option which can compromise the uncertainty seen at that point). Figure 
4.9 shows a graphical representation of the chain of stages and investment decisions, where 
the stages of uncertainty coincide with each year under analysis. 

 
Figure 4.9. Multistage approach 

A multistage representation leads naturally to a more complex problem representation, given 
the fact that the decisions made in stage t+1 will depend on the scenario realisation in stage 
t. This structure may seem to isolate the decisions of each stage, but, in reality, they are all 
strictly interrelated. Modelling flexibility in the future can have a substantial impact on the 
decisions that are being made today, because of the potential to modify them as uncertainty 
unfolds. 

This difference in the modelling approach (two-stage vs multistage) is paramount to achieve 
an efficient development of the system. It could be argued that the investment flexibility 
provided by the multistage approach could be achieved by the two-stage approach by 
repeating the investment exercise as often as possible (rolling horizon). However, this is 
incorrect in the sense that, although the rolling horizon is effective in correcting the 
investment strategy as uncertainty unfolds, the two-stage approach might be blind to future 
compromise solutions that could be found if the future is modelled as it would reveal itself 
sequentially in multiple stages; in turn, this will affect the decisions made in each rolling 
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period32. As a matter of fact, the multistage approach can also be use in the context of a 
rolling horizon exercise, as shown in Figure 4.10. 

 
Figure 4.10. Conceptual application of rolling horizon in two-stage and multistage decision approaches 

A multistage representation generally creates challenges from the point of view of the size of 
the problem. This can render infeasible any approach relying on exhaustive analysis of 
investment combinations.  

Among the options to make decisions in the context of a multi-stage setup (to capture more 
flexibility), the two natural options to consider correspond to the multistage stochastic 
decision approach and the multistage LWR approach, as presented in Figure 4.11.  

 
Figure 4.11. Structure of multistage decision approaches 

The multistage stochastic approach has been widely used in the context of power system 
expansion and the solution methods are well-known. Since in every stage a minimisation 
problem is solved, it is possible to find solution strategies that scale well for large problems, 
through decomposition approaches [48]; also, adequate risk measures can be included in the 
formulation with the aim to search for solutions that keep the downside risk limited to fit the 
risk aversion requirements [29]. 

                                                      

32  The concept could also be expressed as follows. Even if the decisions were adjusted (“corrected”) 
systematically through the rolling horizon, modelling with a two-stage approach would only capture a reduced 
amount of investment flexibility simply because after the first stage everything else would become wait-and-
see decisions associated to each scenario. That is, the loss of flexibility comes from assuming that the future is 
set after stage 1. Of course, this is not strictly a problem of the two-stage approach, but rather a more general 
implication of how the future is modelled. 
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The corresponding multistage problem using the LWR approach is a rather complex problem 
[46]. As seen in Figure 4.11, the resulting multistage problem yields a nested structure, which 
stems from the subsequent min-max problems that have to be solved in each stage. There 
are solution strategies that have been proposed for this problem, typically based on dynamic 
programming. However, the issue lies with the classic shortcoming of dynamic programming, 
the so-called curse of dimensionality, which in this case is activated by the number of 
reinforcements that are being considered and also the different decisions that can be made 
for each reinforcement. 

Each modelling approach has advantages and disadvantages, both from a computational and 
theoretical (characteristics of the decisions, [7]) perspective. However, if the methodology is 
structured as a multistage decision problem this will allow accessing as much investment 
flexibility as possible. 

4.4 Current practices and recommendations 

4.4.1 Current practices 

In the first report [7] the CBA stage of the NOA process was described in detail, and we briefly 
summarise it here for convenience.  

The principles behind the most important steps of the CBA methodology in regard to 
investment flexibility are reflected in the example presented in Section 4.2.2 of this report. 
The CBA consists of a series of phases that aim to determine first the optimal deployment 
path for each of the scenarios under analysis and then the LWR decisions for a subset of 
reinforcements. The reinforcements that enter the LWR stage correspond to those that fit 
the criterion of being critical in some scenarios; a reinforcement is said to be critical in a given 
scenario if it appears active at its earliest in service date (EISD) in that scenario, which in turn 
means that it has to be proceeded today to make that happen.  

Then, if a reinforcement is critical in only some scenarios and not all of them, it enters the 
single-year LWR process to determine what of the reinforcements that comply with the 
abovementioned criterion have to be proceeded this year. This way, the single-year LWR 
mirrors a two-stage decision process where the first stage corresponds to making the 
decisions of what reinforcements to proceed, and the seconds stage operates the system with 
the selected reinforcements under each scenario conditions (that are not supposed to change 
in the future).  

In the context of the CBA the first-stage decisions of the LWR only consider a subset of 
reinforcements and the subsequent operation of the system under different scenario 
conditions is run considering that all other reinforcements have been fixed to start operation 
according to their optimal deterministic deployment. The decisions made in the LWR problem 
correspond only to proceed or hold (not proceed) a reinforcement. However, as pointed out 
in the first report [7], the CBA also produces other recommendations that are solely defined 
based on the results of the deterministic assessment for each of the scenarios (e.g. if a 
reinforcement is not being built yet and it is not selected in any of the scenarios, the decision 
is do not start). 
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This analysis is run on a yearly basis; it includes all reinforcements under development plus 
all the new reinforcements options that the transmission owners have presented to be 
considered in the current process. From this pool of reinforcement options, only a few of 
them reach the LWR stage. 

All these elements place the CBA methodology in the realm of two-stage decision processes 
applied on a yearly basis in the form of a rolling horizon problem (Figure 4.10). The two-stage 
approach combined with the reduced set of reinforcements that enter the LWR has the 
advantage of keeping the decision search space limited while enabling to make proceed/hold 
decisions on the subset of reinforcements based on worst regret minimisation. However, as 
it has been presented in previous sections, the two-stage decision structure assumes that 
there is only one point in time in which decisions can be made to address a future represented 
by a set of scenarios; when uncertainty unfolds, it is assumed to strictly follow one of the 
scenarios up until the end of the analysis horizon. Assuming this particular behaviour has the 
effect of limiting the decisions made today to reinforcements that are optimal (according to 
the metric being used) only if the future unfolds in this particular way. Also, it neglects the 
flexibility associated with decisions that can be made in the future to correct the development 
path, as more information of the future is revealed; this impacts the capacity to proceed 
reinforcements that can act as compromise solutions in the future. Also, the reduced set of 
reinforcements that enter the decision-making process under uncertainty limits the 
combinations of options that can be explored to reduce cost and risk. 

4.4.2 Recommendations  

In this section we set out to describe recommendations for potential improvements to the 
CBA of the NOA process. It is important to recognise that potential improvements to the CBA 
methodology will impact other stages of the process (like the studies conducted by the system 
capability team that have been discussed in this report in Sections 2 and 3); also, they might 
affect or require investments in infrastructure in order to keep other factors constant, like for 
example, the number of people involved or the time required to accomplish the tasks. Our 
recommendations are primarily focused on improving the methodological aspects. 

Short/mid-term recommendations (to be potentially operational for NOA 2021/2022) 

Determination of optimal deterministic expansion 

Assuming the current methodology remains as it is, the process to determine the optimal set 
of reinforcements for each scenario (see phases I to III, first report [7]) could be automatized 
as much as possible, both with the objective to reduce the possibility to lose optimal solutions 
and with the objective to release valuable human resources for tasks that are harder to or 
cannot be automated. The quickest solution is to aim at increasing computational resources 
to the point where a brute force (exhaustive search) strategy is feasible: keeping the current 
structure within BID3, calculate the optimal costs of operation for all years and all possible 
combinations of reinforcements that have an associated impact on boundary capability33. 

                                                      

33 NGESO already has in place the infrastructure and procedures to simultaneously determine the costs of 
operation for different selections of years, scenarios and reinforcements. Although solving all current possible 
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This process would result in a map between years, active reinforcements, and associated 
annual operation costs. With this map the determination of the optimal path of deployment 
for each scenario can be conducted with the current steps that NGESO uses (COMP sheet) or 
by means of other suitable algorithm (see Appendix B for some examples) that can guarantee 
optimality. The increase in computational resources should not represent an excessive 
expense compared to the benefits of freeing human resources currently being used to 
conduct the heuristic assessment over 10 weeks. 

Capturing more investment flexibility 

The current sequential methodology reduces the set of options that enters the two-stage LWR 
analysis, the only point where compromise solutions can be found in the current set-up. This 
reduction should be avoided as much as possible to decrease the chance of missing the 
optimal solution. The current nature of the LWR approach in the NOA CBA prevents the 
consideration of more than 12-15 reinforcements simultaneously. 

With this in mind and considering that substantial changes are not possible in the short run, 
the best strategy could probably be to reconsider the strategy to identify the reinforcements 
that can provide flexibility across scenarios. Several exploration strategies can be applied to 
identify this subset of reinforcements, all of which would involve conducting multiple LWR 
experiments with smaller sets of reinforcements to find those options that create the most 
value.  

Operational details 

The current CBA methodology bases its assessment on the calculation of the costs of 
operation for each year in full. When heavy intertemporal constraints are not present in the 
model (e.g. large-scale storage), there is no strict need to model each specific year in full, but 
rather it can be more efficient to identify typical weeks within the year that can, without much 
loss of precision, summarise the relevant operation aspects of an entire year.  

This approach would have great impact on the computational burden associated to this 
problem, by reducing the current computational times and as a steppingstone that will enable 
the future use of integrated approaches that can greatly enhance the quality of the solutions, 
which generally rely on shorter operation periods to determine operational costs (if the 
system conditions allow that). 

The reduction of the size of the operational problem can solve the current need to use 3-hour 
or 6-hours steps to model operation; 12 typical weeks represented with hourly steps produce 
a lighter problem than 52 weeks modelled with 3-hour steps. The right balance between 
operational details and computational burden needs to be further assessed to determine the 
best balance.  

The task of selecting the right periods that effectively represent the operation of the system 
can be conducted by means of similar tools to those presented in Section 3.1.5.1 of this 
report.  

                                                      

combinations (4 scenarios, 10 to 20 years, and 8000+ reinforcement combinations) is a computationally 
expensive task, it is feasible to do so with the right amount of computational infrastructure. It is estimated that 
100-150 CPUs would complete this task within 4 weeks, without substantial intervention from human resources. 
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Frequency of analysis (full NOA process) 

This is a critical aspect of the process that requires a review (see Appendix C for further 
information on the approach taken by AEMO in Australia, for example). The benefit of 
reducing the frequency of the NOA process is straightforward: there would be more time to 
analyse information, refine options, possibly develops a sounder investment methodology 
with automatic algorithms. This time could indeed be used to contemplate more network and 
non-network options, to check network capabilities, to run more simulations, to include 
further aspects for consideration in the assessment of boundary capability (e.g., inertia and 
frequency stability and security ), among many other aspects of the process that would 
benefit from an extended assessment period. All these studies will yield a better decision on 
what reinforcements to pursue and what reinforcements to discard; also, it would provide 
more time to transmission owners to better assess their options. The main disadvantage of a 
less frequent assessment is the potential delay in making decisions associated to starting or 
stopping reinforcements. Further assessment is necessary to quantify the trade-off between 
delaying decisions and having a better understanding of the set of options available to expand 
transmission. The intuition34 here is that the negative effects associated with reducing the 
frequency from making decisions every year to doing so every, say, second year could be 
(largely) compensated by the benefits of allowing more time to refine the analysis and present 
more flexible options, as previously discussed.  

Mid-term improvements 

Determination of optimal deterministic expansion 

If the steps to determine the reinforcements that enter the LWR assessment remain as they 
are, the deterministic solutions will still be necessary. However, if the set of candidate 
reinforcements grows too large, the current sequential approach or the brute force approach 
can become infeasible. To solve this issue an integrated optimisation algorithm could be used, 
based on a selected decomposition approach or formal algorithm if necessary35, to search 
efficiently for the optimal deployment of reinforcements to minimise the costs of operation 
under each deterministic scenario. This would yield savings on time as well as on 
computational and human resources; however, it would require the implementation of a 
search algorithm (see Appendix B). It is possible that such an algorithm can be implemented 
as a layer that will make use of the current BID3 infrastructure. The underlying algorithm 
could be based on classical dynamic programming approaches, as well as on nested Benders 
decomposition and/or Dantzig-Wolfe decomposition – this would depend on the size and 
complexity of the specific problem that needs to be solved, which would have to be analysed 
in detail as part of a future project. 

                                                      

34 We would need to run specific studies to formally assess this, which is however outside the timeline and scope 
of the current work. 

35 If the number of options grows too large, solving the problem by brute force might be infeasible even for a 
deterministic case. Currently, the brute force approach would need to solve four scenarios, for 20 years, with 
some 8000 reinforcement combinations, which would worsen if the number of reinforcement combinations 
grows. 
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Capturing more investment flexibility 

According to the elements presented in this report, in order to capture more flexibility from 
the investment options, there is the option of increasing the details of the decision set for 
each reinforcement (real options modelling) and also enhance the representation of the 
decision space by implementing a multi-stage decision problem.  

a. Real options modelling:  

Increasing the set of decisions associated to each reinforcement option will naturally create 
more flexibility in the decisions. However, this can only capture flexibility if NGESO can access 
credible information associated to costs of making other real options decisions. The current 
model with five different decisions (proceed, delay, hold, stop, do not start; see definition in 
[7]) seems to provide good trade-off between information requirements, complexity and 
precision. Further options should be coming from a more systematic analysis of the 
deterministic scenario decision space and relevant combinations. 

b. Multi-stage decision model:  

Transforming the model from a two-stage to a multi-stage approach presents several 
challenges. In general, the sheer size of the underlying problem will increase, which in the 
case of the CBA analysis already poses a great challenge under the current conditions.  

The associated comprehensive cost map described earlier in this section can be used not only 
to find the optimal deterministic path but also in the context of a multi-stage decision model. 
In this context a bespoke algorithm (see Appendix B for examples) could be implemented to 
search the option space under a desired metric, using the map to evaluate each feasible 
combination of decisions to derive the optimal solution. The time needed to run such a search 
algorithm would have to be determined with further assessments, and it would be added on 
top of the time required to create the comprehensive map of operational costs.  

• The additional time associated with the search of the stochastic (plus risk metric) 
approach can be in the order of hours depending on the size of the associated 
stochastic tree (see Figure 4.11).  

• The multistage LWR would pose higher challenges due to the nested nature of the 
model (whose possible solution resides in the realm of dynamic programming), 
resulting in a search algorithm that might take weeks to find a solution for a few 
decision stages. A precise evaluation of the additional times involved, and the 
structure of the specific algorithms, would require further studies. 

Mid- to long-term improvements 

Extensions of the planning methodology to systematically include more options and other 
technologies 

It is expected that, as the number of non-network options increase, the sequential 
assessment will naturally become infeasible due to the expanding and/or denser search 
region (see Figure 4.1, passing from analysing Space TO to Space T or Space U).  

In the long run, an integrated approach with enhanced representation of operation details 
(see for example Appendix B) could be a much better (if not the only) approach to search for 
the optimal reinforcement path without relying on assumptions to reduce the search space. 
A reliable integrated multistage approach would be most readily implemented with a 
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stochastic program, in case with risk constraints (e.g., CVaR), which would extend the current 
LWR approach while maintaining the risk-controlled philosophy36. This would also include 
solutions that are in principle outside the deterministic search space, thus truly unlocking the 
possibility of exploring both operational and investment flexibility in a stochastic 
programming/real options set-up. 

Our advice is therefore for NGESO to start exploring the application of integrated stochastic 
programming approaches. In order to incorporate the degree of risk aversion associated to 
the LWR approach a suitable risk aversion metric can be used to control the risk position. This 
would help coping with the growing set of reinforcement options and novel investment 
options, while providing the capacity to capture compromise solutions through an enhanced 
representation of the future. 

  

                                                      

36 A multi-stage LWR approach might be difficult to implement and/or impractical. 
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5 General feedback and roadmap for recommendations 

5.1 Feedback and recommendations 

Considering the review of SC team’s workflow in the preparation of ETYS and boundary 
capability evaluation for NOA, we would like to provide the following feedback to the current 
methodology: 

• The uncertainty brought by increasing penetration of renewable energy might require 
network planners to redefine their planning methodology, so that it can account for 
the impact of this uncertainty in the evaluation of network’s technical performance, 
and consequently accommodate these changes in the cost-benefit analysis which 
decides the worthiness of a network investment. NGESO has already been actively 
developing a probabilistic analysis to enhance the existing deterministic one which 
only derives boundary capability in winter peak snapshot. We have made 
recommendations which can enhance the current methodology from several 
perspectives, such as using different sampling techniques to derive boundary 
capability setpoints, proposing reliability indices and risk metrics to monitoring 
network performance, and using machine learning techniques to perform network 
security assessment and predict boundary capability contribution from reinforcement 
options.  

• Although the computational time of NOA’s CBA could be substantially reduced by 
using static 37  boundaries to represent network constraints in system operational 
modelling, with more and more variable power flows it may introduce more 
inaccuracy in measuring constraint cost reduction contributed by reinforcement 
options. Therefore, it may be beneficial to integrate the network technical modelling 
into the CBA’s economic dispatch analysis; this would consequently enable a more 
precise calculation of network constraint costs in NOA’s CBA. 

• Commercial solutions can be a great complement to network-based options for 
network reinforcement, as these solutions feature significant technical and economic 
flexibility. Taking grid-scale battery as an example, it might be able to provide different 
ancillary services (e.g., frequency response, balancing mechanism) besides reducing 
network congestions. Commercial solutions have a more flexible service contract 
length (e.g., 5-10 years), which could be shorter than the lifetime of network-based 
options (e.g., 30-40 years from transmission lines). This feature represents a valuable 
factor in investment flexibility. NG has also been developing commercial solutions 
which are included in the reinforcement options list published in NOA. However, the 
methodology of commercial solutions evaluation, which is explained in 2.3, could be 
further improved by integrating it into the NOA framework to evaluate the constraint 
costs under a unified framework. 

Regarding the current methodology of NOA’s CBA, it was analysed in detail in the first report 
[7], focusing on discussing the core elements of the decision-making process. In this report 

                                                      

37 “Static” means using a single value to represent the upper limit of power flow across a boundary in a season 
or a year. 
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we delved deeper in the aspects related to the identification of investment options that would 
provide more flexibility across scenarios: 

• The structure of decisions associated with each reinforcement option seems to 
provide sufficient flexibility to initiate, hold or stop a project. However, this structure 
of decisions is used in the context of a two-stage decision process where many of the 
decisions are fixed based on the deterministic assessment of the scenarios. This is 
reducing the space of investment strategies that can be selected by the LWR to a point 
where possibly very little flexibility can be captured.  

• Seeking more flexibility is a process that in general has very high computational 
requirements because many combinations of options have to be assessed under 
different operation conditions; in this context, in the short-term, we recommend to 
focus in automatising the deterministic assessment of each scenario as much as 
possible, reduce computational burden by finding the right periods of operation of the 
system that capture the system behaviour for each year and each scenario, and 
improving the selection of the reinforcements that enter the LWR in order to be able 
to capture more flexibility 

• In the long run the CBA assessment should aim to evolve into a multistage integrated 
model that can evaluate network and non-network solutions without the need to first 
assess the operation of the system for all combinations of investment options in all 
scenarios. These integrated models are currently available for risk-constrained 
stochastic approaches; however, no efficient solutions exist, to our knowledge, in the 
realm of multistage LWR. Not evolving into an integrated approach in the long run 
might render the current methodology inadequate to fully assess flexible investment 
options and incorporate more complex representations of future decisions; this, in 
turn, might generate larger regrets than those that the current methodology is 
capable to prevent.  

5.2 Roadmaps for recommendations 

Two technical roadmaps are shown in Figure 5.1 and Figure 5.2, which streamlines the 
development of the recommendations we have proposed in sections 3 and 4 for ETYS and 
NOA, respectively. The implementation of these technical changes is arranged in a sequential 
way with different timeframes (e.g., short term, medium term and long term). These two 
roadmaps consider the feasibility and urgency of each task after discussing with the SC and 
ECON team, who will be in charge of the corresponding developments (subject to the 
approval of the stakeholders of ETYS and NOA).  
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Figure 5.1. Technical roadmap of the recommendations suggested for the improvement of ETYS and NOA processes 

Figure 5.1 depicts the roadmap for potential technical modelling improvements, which is 
aimed at better capturing the operational assessment of future GB power systems.  

In terms of short-term developments, which we think could be applied relatively quick to the 
methodology of ETYS in the next couple of years: 

• The K-means method could be used to select the demand and renewable generation 
profiles in the probabilistic boundary transfer analysis. 

• Other than identifying a single number to reflect the boundary transfer capability in a 
season, specific reliability indices could be introduced to reflect the network 
performance at boundary and components level; for example, we discussed indices 
such as “boundary congested energy”, “boundary congestion probability”, 
“component overloading probability” and “component overloading frequency”. By 
calculating these indices, the confidence of applying one specific boundary capability 
figure in NOA’s CBA could be further boosted.  

• Two neural network models could be adopted to strengthen some aspects of the 
current methodology. The first one could be used to quickly classify the network 
operating states (secure/insecure) in any given dispatch profile, which could reduce 
the computational time of NOA’s CBA, as depicted in Figure 3.8. The second neural 
network model could be adopted to replace manual scanning in the “Challenge and 
Review” process of reinforcement options submitted by TOs, which could 
substantially improve work efficiency of SC team in this process and explore more 
complete combinations of reinforcement options. 

After working on the potential short-term developments, more extensive work could be done 
to enhance the boundary transfer capability assessment. In this case, we suggest the 
following: 
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• To use stratified sampling to firstly identify multiple potential values of boundary 
transfer capability, rather than use the single value calculated by following SQSS or 
the current probabilistic method presented in Section 2.2.2.  

• By applying different bi-directional transfer constraints with the potential values 
derived above, Monte Carlo simulation could be performed with an appropriate 
number of scenarios until the value of all indices have converged.  

• The probability distribution of each index value in MC simulation results could be 
retrieved and the corresponding risk metric calculated, such as value at risk (VaR) and 
conditional value at risk (CVaR), which would indicate the network performance in the 
worst scenarios. By deriving these two risk metrics, the network owner would not only 
better understand the average performance of the network, but also its performance 
in stressful scenarios, which is an important factor to be considered in network 
planning.  

• The last potential enhancement refers to integrating the technical modelling of 
network into NOA’s economic dispatch instead of using static boundary constraints to 
mimic network components performance at an aggregated level. By integrating 
redispatch and post-fault corrective actions into NOA’s economic dispatch process, 
the accuracy of constraint costs estimation could be improved and a fairer comparison 
in the LWR analysis enabled (details on this are in the first report of this project [7]). 

Figure 5.2 presents the summary of assessments and changes that are proposed in the 
context of the NOA process and the NOA CBA for capturing investment flexibility.  

 
Figure 5.2. Roadmap of recommendations for the NOA process and the NOA CBA 

• Assessing the optimal frequency of the NOA process is a task that needs to be 
conducted in the short term due to the impact this would have in the implementation 
of other recommendations. Presumably implementing changes in this regard can take 
much longer, but understanding the real trade-offs between running the process 
every year versus making it less recurrent might have substantial impact on the need 
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of implementation of other recommendations and eventually on the overall quality of 
the recommendations. 

• Determining the right degree of details in the representation of the operation could 
reduce substantially the computational burden associated to the path determination 
in the CBA analysis. This can be achieved by comparing the current optimal investment 
strategy with those obtained while progressively reducing the number of operational 
periods represented for each year (the selection of representative operation periods 
can be conducted by appropriate clustering methods). Since all other 
recommendations for the NOA CBA are strictly connected to the representation of 
operation, any gains in this regard can improve the overall performance of the 
methodology. 

• Under the current methodology, the determination of the optimal paths of 
deployment is conducted through a heuristic methodology, heavily reliant on human 
intervention. In the short term this process should be automatised as much as 
possible, through an exhaustive search of the optimal path or, in the mid-long run, 
through algorithms capable of doing an integrated assessment of investment and 
operation to determine the optimal deterministic path for each scenario. 

• Finally, in order to capture more flexibility for investment options, the short-term 
strategy should be focused on identifying compromise solutions among the global set 
of reinforcements that is being considered. This will require exploration of options 
that the current methodology is not finding due to the approach used to select the 
reinforcements that are subject to the single-year LWR decisions; this will involve the 
assessment of new heuristic approaches to select that set. In the mid-long term, the 
efforts should be put in making the timing of the decisions more flexible as much as 
possible and advancing towards a multistage decision model. To do this systematically 
the long-term aim should be to build an integrated multistage model (most likely 
based on risk-constrained stochastic cost minimisation) that can decide what areas of 
the space of options are interesting to search by progressively studying the operation 
of the system under different combinations of network and non-network options.  
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8 Appendices 

8.1 Appendix A: GB system boundary map [2] 
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8.2 Appendix B: Algorithms to find optimal development paths 

8.2.1 Optimal investment paths under pre-defined assessment of operational costs 

The availability of an existing assessment linking all scenarios, years, and reinforcement 
combinations to corresponding system operation costs (referred to as map of operation costs) 
can reduce substantially the complexity of the approach to search for the optimal path of 
development, either in a deterministic or stochastic context. Such a map may actually be built 
in the context of the current NOA methodology thanks to the integer nature of the decisions 
involved in the transmission expansion problem (all feasible solutions can be listed38).   

If the operation costs associated with the reinforcement combinations that need to be 
studied can be mapped (in advance), all the burden associated to the determination of 
optimal operation can be decoupled from the investment problem. Then the efforts can be 
focused on building an adequate model to select the optimal reinforcements, and in turn 
developing a suitable search strategy. 

Reinforcement selection optimisation problem 

If the map is available, it is feasible to create a single integer optimisation problem that can 
incorporate all the information contained in the map to make the decision about what 
reinforcements to deploy and when to do it. This approach can work both for the 
deterministic assessment for each independent scenario, which we present below, or it can 
be extended to its stochastic version based on cost minimisation (including a suitable risk 
measure like CVaR).  

In order to clarify better how this optimisation problem would be implemented, we present 
the following example for a deterministic case considering the map of operation costs 
presented in Table 8.1. In the case of the assessment of the optimal path of deployment for 
scenario 1 (deterministic), the only relevant variable is to know if a given reinforcement is 
active or not, which will be represented by symbol 𝑖𝑟,𝑦

𝑠  whose value will be equal to 1 if 

reinforcement r is active in scenario s and year y, and 0 if not. Annualised investment costs 
are represented by 𝐼𝐶𝑟,𝑦

𝑠 . All costs are referenced to the same year using a discount rate.  

Table 8.1. Map of operation costs 

 Year 1 Year 2 

Reinforcement Scenario 1 Scenario 2 Scenario 1 Scenario 2 

- 𝑶𝑪𝟎,𝟏
𝟏  𝑂𝐶0,1

2  𝑶𝑪𝟎,𝟐
𝟏  𝑂𝐶0,2

2  

R1 𝑶𝑪𝟏,𝟏
𝟏  𝑂𝐶1,1

2  𝑶𝑪𝟏,𝟐
𝟏  𝑂𝐶1,2

2  

R2 𝑶𝑪𝟐,𝟏
𝟏  𝑂𝐶2,1

2  𝑶𝑪𝟐,𝟐
𝟏  𝑂𝐶2,2

2  

R1+R2 𝑶𝑪𝟏+𝟐,𝟏
𝟏  𝑂𝐶1+2,1

2  𝑶𝑪𝟏+𝟐,𝟐
𝟏  𝑂𝐶1+2,2

2  

                                                      

38 If any of the investment decision was continuous (e.g., to define the optimal transfer capacity of a particular 
reinforcement), it would be impossible to build an exact map, simply because in that case the investment options 
would not be enumerable. One could circumvent that issue by discretizing the continuous variable, but the 
resulting map would not be totally precise, and its size would potentiality grow considerably depending on the 
number of discrete steps for each continuous variable. In the case of the options provided by the TOs, the 
decision variables are binary, so the combinations can be enumerated. Also, the limited number of boundary 
capabilities studies that can realistically be run reduces the combinations of reinforcements that have to be 
included. In fact, the combinatorial nature of the exercise could eventually render the overall task intractable as 
more reinforcements are considered. 
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The resulting optimisation problem is presented below. The expression for the investment 
(INV) is straightforward, considering the annualised investment costs and investment 
variables. 

𝐼𝑁𝑉: 𝐼𝐶1,1
1 ∙ 𝑖1,1

1 + 𝐼𝐶2,1
1 ∙ 𝑖2,1

1 + 𝐼𝐶1,2
1 ∙ 𝑖1,2

1 + 𝐼𝐶2,2
1 ∙ 𝑖2,2

1  

The operation costs are represented by expressions OP1 and OP2 for years 1 and 2, 
respectively. Auxiliary variables 𝑟𝑐𝑝,𝑦

𝑠  are used to represent when a combination (or portfolio)  

𝑝 of active reinforcements unlocks lower associated operation costs; these variables are also 
binary, taking value 1 if the reinforcements in the set are all active, and 0 if at least one of the 
reinforcements activation variables is also 0. This yields the following expressions: 

𝑂𝑃1:  𝑂𝐶0,1
1 ∙ 𝑟𝑐0,1

1 +𝑂𝐶1,1
1 ∙ 𝑟𝑐1,1

1 + 𝑂𝐶2,1
1 ∙ 𝑟𝑐2,1

1 + 𝑂𝐶1+2,1
1 ∙ 𝑟𝑐1+2,1

1  

𝑂𝑃2 :  𝑂𝐶0,2
1 ∙ 𝑟𝑐0,2

1 +𝑂𝐶1,2
1 ∙ 𝑟𝑐1,2

1 + 𝑂𝐶2,2
1 ∙ 𝑟𝑐2,2

1 + 𝑂𝐶1+2,2
1 ∙ 𝑟𝑐1+2,2

1  

This results in the following objective function: 

𝑚𝑖𝑛
𝑖,𝑟𝑐⃗⃗⃗⃗⃗

𝐼𝑁𝑉 + 𝑂𝑃1 + 𝑂𝑃2  

The relationship between variables representing investment in reinforcement decisions and 
the variables representing the activation of sets of reinforcements unlocking of corresponding 
operation costs are represented by the following expressions (set of reinforcements  can take 
value 1, which unlocks its associated operational cost, if and only if all the corresponding 
reinforcements activation variables  are also 1).: 

𝑖1,1
1 ≥ 𝑟𝑐1,1

1  

𝑖2,1
1 ≥ 𝑟𝑐2,1

1  

𝑖1,1
1 + 𝑖2,1

1 ≥ 2 ∙ 𝑟𝑐1+2,1
1  

𝑖1,1
1 ≥ 𝑟𝑐1,2

1  

𝑖2,1
1 ≥ 𝑟𝑐2,2

1  

𝑖1,1
1 + 𝑖2,1

1 ≥ 2 ∙ 𝑟𝑐1+2,2
1  

Of course, if no reinforcement is built, the corresponding operation costs for the system 
without reinforcements have to be activated in the objective function, which is represented 
by means of variable rc with subindex 𝑝 = 0. This condition can be guaranteed by ensuring 
that for each year only one variable 𝑟𝑐𝑟𝑠,𝑦

𝑠  has to be equal to 1: 

𝑟𝑐0,1
1 + 𝑟𝑐1,1

1 + 𝑟𝑐2,1
1 + 𝑟𝑐1+2,1

1 = 1 

𝑟𝑐0,2
1 + 𝑟𝑐1,2

1 + 𝑟𝑐2,2
1 + 𝑟𝑐1+2,2

1 = 1 

If an investment is active in year 1, it has to be active in year 2: 

𝑖1,2
1 ≥ 𝑖1,1

1  

𝑖2,2
1 ≥ 𝑖2,1

1  

𝑖1+2,2
1 ≥ 𝑖1+2,1

1  

All variables 𝑟𝑐𝑟𝑠,𝑦
𝑠  and 𝑖𝑟,𝑦

𝑠  are binary. 

This formulation can be extended to incorporate further constraints to reflect rules of 
deployment as in the current NOA methodology (mutual exclusivity, must happen together, 
must follow, avoid operational clashes during construction; for more information on these 
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rules see [7]) and other considerations that need to be included to obtain a feasible 
deployment path.  

Solution approaches   

The problem presented before can be solved in various ways. Here we present two options, 
through a suitable mixed integer optimisation solver or using dynamic programming. 

Probably the most effective approach is searching for the solution using a mixed integer 
optimisation solver; these solvers implement searching algorithms that progressively cover 
combinations of integer variables, selecting what potential solutions are worth exploring 
based on the information extracted from the combinations that have been visited already 
(branch and bound algorithm). The problem can be formulated in-house or by a third party 
and run using free or off-the-shelf proprietary solvers. If the resulting problem is too large, 
this could be addressed through a suitable decomposition approach too. 

The dynamic programming approach is based on determining, for each year y, the 
combination of possible investment transitions between year y and y+1 (in this case it is said 
that the state of the system is determined by the reinforcements that are available at the end 
of year y). Based on the operation costs presented in Table 8.1, the total cost for each possible 
state of the system in each year are listed in Table 8.2. 

Table 8.2. Total costs of operation for each state of the system in both years for Scenario 1 

 Scenario 1 

Reinforcement Total Cost Year 1 Total Cost Year 2 

- 𝑂𝐶0,2
1  𝑂𝐶0,2

1  

R1 𝐼𝐶1,2
1 + 𝑂𝐶1,2

1  𝐼𝐶1,2
1 +𝑂𝐶1,2

1  

R2 𝐼𝐶2,2
1 + 𝑂𝐶2,2

1  𝐼𝐶2,2
1 +𝑂𝐶2,2

1  

R1+R2 𝐼𝐶1,2
1 + 𝐼𝐶2,2

1 + 𝑂𝐶1+2,2
1  𝐼𝐶1,2

1 + 𝐼𝐶2,2
1 + 𝑂𝐶1+2,2

1  

By assessing all the feasible transitions between subsequent years  (e.g., if year one is in state 
R1, the possible feasible states for year 2 are R1 and R1+R2, because when a reinforcement 
is in place it cannot be removed), it is possible to build a transition list like the one presented 
and to proceed in a backward way. The feasible states are presented in Table 8.3. 

Table 8.3. Feasible states between year 1 and year 2 

Scenario 1 

State Year 1 Feasible State Year 2 

- - / R1 / R2 / R1+R2 
R1 R1 / R1+R2 
R2 R2 / R1+R2 

R1+R2 R1+R2 

For each state in year 1, the algorithm would determine the minimum total cost of operation 
in year 2 among the feasible states. This value would then be added to the cost of the 
corresponding state of year 1.  

The output of the previous step is a list of states in year 1 with the corresponding total costs 
for years 1 and 2 if a given state is selected in year 1. Proceeding similarly as before, the 
minimum total cost is selected from the new list, defining the optimal decision for year 1 and 
by extension from the previous step, also the optimal decision for year 2. 

This procedure can be extended for multiple years. Also, it can address multiple scenarios 
through its stochastic dynamic programming version. The drawback of this approach is that it 
becomes very heavy if the number of transitions between states is too large, which in this 
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case is directly related to the number of reinforcements being considered (this is known as 
the curse of dimensionality). 

8.2.2 Integrated approach 

Fully integrated approach refers to those algorithms that do not rely on the existence of an 
exhaustive map for the costs of operation under different investment combinations and 
different system conditions. These algorithms can find a solution for the expansion problem 
by systematically searching the best balance between operation and investment costs. This is 
done by splitting the full problem into smaller problems that iteratively interact to narrow 
down the solution space until they find the optimal investment set. 

 Although there are many different integrated algorithms available, only one fully integrated 

approach is presented here, the Dantzig-Wolfe decomposition with column generation 

algorithm. This is because this approach is one of the most flexible to incorporate different 

types of operational constraints in different forms. The purpose here is to shed some light on 

the main steps contained in these approaches and the information that is required to 

effectively run them. 

Dantzig Wolfe decomposition with column generation algorithm 

Without delving into mathematics behind the decomposition [51], the result of applying this 
approach is a set of smaller problems (called “slave” problems) that can represent the 
operation of the system in different years and under different scenarios (if the original 
problem models multiple scenarios), as presented in Figure 8.1. Each slave problem will 
contain all the constraints to characterise the operation of the system in the period of time it 
represents; the objective function of the slave problem contains all the terms to evaluate the 
costs of operation and also a set of terms (“duals” that are obtained from the master problem, 
whose structure is described below) that is updated in each iteration, containing information 
about the global cost reduction associated to activating different investment options. 

The “master” problem receives the information produced by the slave problems in each 
iteration – this information is referred to as “column”; each column contains the operation 
cost and the associated investments selected in each slave problem (also known as “pricing 
subproblems”). The master problem, usually referred to as the restricted master problem, 
then selects one of the columns found in previous iterations for each slave problem looking 
to minimise the overall investment costs and the associated operation costs. For instance, 
each year’s operation can be represented by a number of slave problems covering each a 
given timeframe (usually 1 week). 

 
Figure 8.1. Structure of Dantzig Wolfe decomposition with column generation 
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Each iteration consists of running a series of steps which are described below: 

1. The restricted master problem is run. 
2. The investment sensitivities (also called “duals”) are passed to the slave problems. 
3. All slave problems are run. 
4. The new columns generated in each slave problem are returned to the master 

problem. 
5. The lower and upper bounds for the target value are calculated using the results from 

the master and slave problems. 
6. If the difference between the lower and upper bounds is within a tolerance, the 

algorithm stops and the solution is obtained. 
7. If the difference is outside the accepted tolerance, go to step 1. 

There are considerations regarding the integrality of the solutions39 and the nature of the 
master problem that are not described here, but the general procedure does not change 
substantially. 

The relevance of this kind of approach is that the algorithms progressively inspects only the 
combinations of investments that produce more value, which of course reduces the need to 
solve all possible operation conditions associated to all possible investment combinations. In 
turn, this allows for a higher number of investment options to be considered, because the 
algorithm will concentrate only in those combinations whose associated investment costs are 
balanced out by the reductions in operation costs. Also, this particular algorithm allows for 
the slave problems to be mixed integer linear problems, which can represent a substantial 
advantage if the operational conditions of the problem can benefit from using integer 
variables.  

  

                                                      

39 The decomposition algorithm requires that the integer variables of the master problem are relaxed (made 
continuous) in order to obtain the dual values for the investment constraints. When the algorithm converges, 
the restricted master problem might thus yield investment solutions that are not integer; this issue is solved 
with further steps that are not specified in this document. 
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8.3 Appendix C: AEMO’s LWR approach  

The Australian Energy Market Operator (AEMO) has recently updated their methodology40 to 
assess the reinforcement requirements of the Australian eastern system’s interconnection 
capacity (this refers to the transmission capacity between Australian states). This process is 
known as the Integrated System Plan (ISP) [52], which differs substantially from the NOA 
process. This is mainly because it includes many elements associated with the FES process 
(definition of scenarios), so that the overall exercise is closer to a system architect approach 
rather than a pure transmission expansion model. However, the ISP has at least two features 
that are relevant for the discussion in this section. First, in order to determine what 
investment projects to recommend, a LWR methodology is applied, whose main steps are 
described below. Second, the formal outcomes of the ISP are presented every two years, with 
an interim report (called draft report) between final reports; this approach also can provide 
a reference for the discussion about the frequency at which is optimal to run the analysis in 
order to balance out the benefits and the costs associated with carrying out this process as 
frequently as possible. 

The ISP considers five different scenarios which are defined in a similar fashion to the 
scenarios of the FES (considering degree of decentralisation and decarbonisation). Also, they 
describe several sensitivities on top of each scenario, generally connected to large changes in 
the system topology or composition that can substantially affect the behaviour of the system.  

 
Figure 8.2. Steps for determination of LWR strategy in the transmission expansion stage of the ISP 

The methodology, summarised in Figure 8.2, starts by calculating the optimal set of 
reinforcements for each deterministic scenario; this strategy will be referred to as “original 
strategy”. Then, assuming the original strategy is fixed, the underlying conditions of the 
scenario are changed, one by one, to those described in the sensitivities and the other 
scenarios (which we refer to as “alternative conditions”). Each of these new problems is 
optimised considering the remaining reinforcement options that were not chosen in the 
original strategy; this yields a new total cost of investment and operation for each of the 
alternative conditions. In turn, this allows building a set of regrets associated with pursuing 
the original development strategy. The next two steps are fairly standard: first, determine the 
maximum regret associated to each original strategy and then minimising the maximum 
regret to decide the strategy that should be deployed to minimise the worst regret. 

There are fundamental differences but also similitudes between AEMO’s approach to 
transmission expansion recommendation and the NOA CBA’s methodology. The 
methodologies are similar in the sense that both of them are not multistage decision models; 

                                                      

40 The current description of AEMO’s methodology is based only on the interpretation of the methodological 
description made available to the general public.  
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they select an original strategy for each deterministic scenario and then they assume that at 
some point one particular scenario will unfold and the future will be completely determined 
by the characteristics of that scenario. This limits the capacity of both models to find 
compromise solutions. 

As for the differences, the set of options for reinforcements that AEMO considers is smaller 
(33 candidates over 5 boundaries) than the set considered by National Grid ESO (145 
candidate projects over 56 boundaries, which later on is reduced to less than 15 when the 
LWR phase is run). Mostly important from a methodological perspective, the assessment of 
regrets is substantially different: the NOA process considers the possible strategies as all the 
combinations of decisions about proceeding or holding the current year the reinforcements 
that enter the LWR, whereas AEMO considers the strategies as those resulting from 
reinforcing the network to adapt each original strategy to operate under a different scenario. 
To summarise, the NOA CBA LWR methodology modifies only decision associated to the first 
year, while AEMO’s LWR methodology can modify decision at any point in the horizon. 

The frequency of revisions of investment recommendations in AEMO’s methodology is 2 
years. It can be conjectured that such frequency is deemed enough to amend investment 
decisions and propose new options, and also to provide sufficient time between official 
recommendations to assess the status of the system, the view of the future and to run 
appropriate technical studies on the different investment options. 
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