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Executive summary 

In this report we address a number of fundamental questions of interest to NGESO for its NOA 

process, namely: 

• What decision-making methodologies are available and which ones are practically 
adopted in different countries for electricity system planning under uncertainty?  

• How could different decision-making methodologies be compared in a systematic way? 

• What is the potential role of probability weights assigned to scenarios? 

• Is LWR an adequate decision-making tool within the NOA scope? 

• How could the current NOA decision-making process be improved? 

To address these questions, we have performed a thorough literature review of technical and 

academic literature and current industry practices on transmission planning worldwide, as 
well as of methodologies for decision making under uncertainty. 

The results of our study suggest that National Grid’s current NOA methodology is at the 
forefront of the state of the art, particularly with regards to the use of a rolling-horizon Least 

Worst Regret (LWR) approach which accounts for considering the impact of the suggested 
investment option across multiple scenarios as well as for some degree of decision flexibility. 
Furthermore, none of the surveyed system operators around the world seems to adopt 

probability weights for their scenarios, and it is not even clear how integrated decisions across 
multiple scenarios are made.  

To assess potential implications of a “more probabilistic” analysis, in case including scenario 
weights, and the use of different methodologies for planning across uncertain future, we have 

developed a new framework that views the planning problem across multiple (in case 
probability-weighted) scenarios as a multi-objective optimization problem. We then 
demonstrate how apparently different methodologies such as probabilistic planning 

(expected value analysis), min-max cost, LWR, etc., do essentially solve the same distance-
minimization problem but only using different metrics in a vector space that describes 
probability-weighted attributes (e.g., costs, regrets) for several scenarios.  

One of the consequences of looking at the NOA problem through the lenses of such a 
framework is that the current LWR approach does already include (implicit and equal) 

probability weights. In the same vein, comparing a probabilistic assessment approach, which 
aims to minimise expected costs (or, equivalently, expected regrets, as we show) across 
scenarios using specific weights, and a LWR approach with no weights (that is, with implicitly 

equiprobable scenarios) might be inconsistent, as the problems that they would be solving 
would effectively be different. A more consistent comparison could be carried out, as we 
discuss in our proposal, by adopting a more general Least Worst Weighted Regret (LWWR) 
approach, for which the current NOA methodology could readily and seamlessly be adapted 

in order to incorporate scenario probability weights.  

In general terms, in comparison with a probabilistic assessment, we show how LWR (or the 
more general LWWR) is intrinsically “less risky” and allows exploring more investment 
solutions. Therefore, irrespectively of the use of scenario weights, LWR may be considered 

superior from the point of view of a decision maker that is risk-averse, and appears to be an 
adequate methodology to perform transmission investment analysis in a highly uncertain 
environment. 
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As potential NOA methodological developments, while we are aware that the selection of 
probability weights to assign to scenarios may be difficult and controversial, we believe that 

our proposed unified framework could at least provide a consistent and comprehensive 
approach to seamlessly compare and assess the outcomes of (apparently) different 
methodologies (i.e., stochastic/probabilistic, LWWR and min-max weighted cost), with 

scenario weights being considered as a natural component of the analysis. This could 
introduce, with negligible changes required in the NOA process, more transparency and 
robustness to the investment analysis and the selected options, thus resulting in reduced risk 
of spurious solutions and reduced risk of decisions being driven more by scenarios than by 

the methodologies themselves, and in general in enhanced hedge against planning 
uncertainty. As exemplified in a synthetic network case study application, such analysis could 
also be supported by visual tools that could identify decision-stability regions with win-win 

recommendations from different methodologies, suggest what solutions might require 
further analysis, and provide a systematic way to perform sensitivities to assess costs, 
benefits, risks and robustness of alternative investment options i n the presence of uncertain 

scenarios. 
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1. Introduction 

1.1. Context 

With increasing renewable penetration level and electrification of different end-use sectors, 
electrical networks around the world are experiencing a drastic change of power flows at both 
distribution and transmission levels. The need for reinforcing existing networks is thus 

becoming more urgent and frequent. At the same time, there is increasing uncertainty as to 
what new network users will connect to the system, and when and where. Planners are thus 
required to strike a delicate balance between security and cost while facing significant long-

term uncertainty. In the technical analysis of system planning, the planner needs to develop 
sophisticated models to mimic the operation of future power systems which are expected to 
be characterised by lower inertia and substantial volumes of non-dispatchable renewables 

and distributed energy sources. As for the economic analysis, due to the inherent nature of 
investment in large infrastructures, with large capital expenditures and long payback periods, 
the planner is required to thoroughly assess all reasonable reinforcement options and 
maximise consumers’ benefits while hedging the risk of stepping into different potential 

futures. Solving all these challenges proves to be a daunting task, especially if the planner 
wants to proceed in a consistent and traceable way. 

As the operator of the Great Britain (GB)’s power system, National Grid Electricity System 
Operator (NGESO) is in charge of carrying out several studies to inform stakeholders and 

provide recommendations about the development of the GB system in both the short and 
long terms. Among these studies, the Network Options Assessment (NOA) aims to assess the 
network reinforcement requirements across the GB system for the next 20 years, and to 
produce recommendations as to what assets to build or services to procure to meet those 

system requirements. The NOA involves both technical and economic evaluations that are 
performed for different scenarios. The technical analysis is currently carried out considering 
a deterministic approach based on a winter snapshot of operation of the system; the 

‘Electricity Ten Year Statement (ETYS)’ process then evaluates network ‘boundaries’ based on 
scaled generation and demand. Based on this technical evaluation and the potential 
reinforcement options put forward by the Transmission Owners, the NOA cost-benefit 

analysis (CBA) then identifies the optimal path of network reinforcements by applying a single 
year Least Worst Regret (LWR) approach that takes into account the need for asset 
investment considering the multiple scenarios.  

1.2. Aims and objectives  

In this report, we aim at addressing a number of fundamental questions of interest to NGESO 
for its NOA process, namely: 

• What decision-making methodologies are available and which ones are practically 
adopted in different countries for electricity system planning under uncertainty? 

• How could different decision-making methodologies be compared in a systematic way? 

• What is the potential role of probability weights assigned to scenarios? 

• Is LWR an adequate decision-making tool within the NOA scope? 

• How could the current NOA decision-making process be improved? 
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To address these questions, first we will perform a review of technical and academic l iterature 
and current industry practices on transmission planning worldwide. Additionally, we will 

review the academic and industry literature on decision making under uncertainty, focusing 
on different techniques (e.g., probabilistic approach, LWR, min-max cost, etc.), risk 
management approaches, and practical applications in different countries. We will then 

introduce a new, unified view of different methodologies for planning under uncertainty – 
most noticeably probabilistic planning and LWR. The proposed framework allows a consistent 
approach to decision making across several scenarios and potentially considering probability 
weights for each scenario, clear analysis of expected benefits and risks from different 

methodologies and scenario weights, and more transparent and robust insights into the 
reinforcement options recommended. Based on both the knowledge gained in the review and 
original research inputs, we will finally provide feedback on the current methodology and 

propose initial recommendations to potentially improve NGESO’s planning process to deal 
with uncertainty.  

1.3. Report structure  

• Section 2 sets out to describe our understanding of the NOA process as an approach to 
make investment decisions in transmission expansion planning, not only for the 
boundaries within GB system but also for the interconnectors between GB and neighbour 
European countries.  

• Section 3 presents a Iiterature review on decision making under uncertainty and 
international best practices for transmission expansion planning (TEP), so as to compare 
the NOA’s assumptions, principles, and attributes to the international experiences in the 
subject, identify relevant differences, and explore potential theoretical and practical 

improvements.  

• Section 4 introduces a new view of planning across multiple (probability-weighted) 
scenarios as a multi-objective optimization problem, which allows us to develop a 
consistent representation of different methodologies for decision making under 

uncertainty – including probabilistic approach, min-max cost, and LWR – as a geometric 
distance problem applied to different value attributes (e.g., cost, regret) for different 
candidate solutions. Relevant case studies also illustrate the benefits of the proposed 

approach and some powerful tools that can enhance transparency and robustness of 
transmission planning under uncertainty. 

• Section 5 provides overall feedback on the current NOA methodology based on the 
studies performed and puts forwards initial recommendations on potential 

improvements in terms of both the theoretical framework that supports the NOA process 
and the mechanics of the process itself.  
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2. The Network Options Assessment process 

This section provides a general description of the NOA process. The description is based on 

official documentation published by NGESO [1], [2] and a series of interviews with different 
people involved in the NOA process. An adequate understanding of the process, as per steps, 
people involved, timing, supporting theory, working assumptions, etc. is of essence to provide 

recommendations that fit both the structure of process and the resources available.  

The NOA process is run on a yearly basis with the objective to provide recommendations to 

the transmission operators on what projects to execute. The recommendations fall within 5 
different categories that are described in Section 2.3.4. As presented in Figure 1, the NOA 
process is based on a rolling horizon strategy, in which each year a set of candidate 

transmission reinforcements is proposed by the transmission owners (TOs) in the context of 
scenarios describing the system’s future (Future Energy Scenarios (FES) [3]). 

The window of time used to assess the different reinforcement options varies between 20 
and 60 years in different stages of the process in order to cope with the lifespan of 
transmission projects (40 years) and the window to make the investment decision (20 years). 

 
Figure 1. Inputs, output and rolling window structure of the NOA process 

The NOA process is run by the Network Development (ND) Team within NGESO. The ND Team 
interacts mainly with the TOs, both to inform them about system requirements (determined 

within ETYS [4]) and to get the different reinforcement options to be considered in the NOA.  

The following sections describe specific aspects of the process, including the timeline, 

modelling aspects of the process, and technical and economic assessments. 

2.1. Team structure and timeline 

The Network Development Team is a group of over 20 people that performs the different 

tasks associated with the technical and economic assessment of the process. The assessment 
spans over several months and it is repeated on a yearly basis. 
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The Technical Economic Assessment Team (TEA team) owns the NOA report and coordinates 
the entire process. It acts as the layer of communication with stakeholders, in particular the 

Office of Gas and Electricity Markets (Ofgem) and the TOs. Also, it helps the Economic 
Assessment Team and System Capability Team with heavy processes, like the cost-benefit 
analysis (CBA) and the challenge and review (C&R) process of the information provided by the 

TOs. It is in charge of assessing the pathfinding projects, which correspond to the evaluation 
of novel approaches to meet system needs.   

The System Capability Team (SC team) owns the ETYS report which presents the boundary 
requirements and capabilities for the GB System. It also runs a C&R process of the information 
provided by the TOs about boundary capabilities. The general description of the SC team tasks 

is presented in section 2.2 

The Economic Assessment Team (ECON team) owns the CBA and determines the investment 

decisions based on LWR. The process involves modelling the future conditions of the system 
and the economic impact of different transmission reinforcements under different system 
scenarios. The steps involved in CBA are described in section 2.3. 

The activities conducted by each team are interdependent and also, they are affected by 
external inputs and interactions with other stakeholders, as presented in Figure 2.  

 

Figure 2. Simplified chart presenting main and timing of the NOA related activities conducted by the ND teams 

The tasks can be grouped in three categories: improvements of processes, study period 
(including training for the CBA, or “CBA t”) and NOA process. The report is published during 
January and before presenting the recommendations resulting from the analysis, these 

undergo the scrutiny of a group of experts, the NOA committee, to check that the 
recommendations are sound. 
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2.2. Boundary capability assessment 

This step of the process is responsibility of the system capability (SC) team. The purpose is to 
determine the capability requirements of the GB system and assess the boundary capability 
provided by combinations of reinforcements.  

The process starts with the development of the ETYS report, which processes the Future 

Energy Scenarios and determines the requirements of the network for the next 10 years for 
each scenario. The process includes running the scenarios with an unconstrained 
transmission network in BID31 to determine the boundary requirements; also, the SC team 

runs specific studies described in the Security and Quality of Supply Standard (SQSS) [5] for 
each boundary to generate information that is made publicly available and also sent to the 
TOs so that they can propose options for reinforcement.  

The concepts of boundaries, boundary capability and reinforcements interact in the process 
of determining the required transmission infrastructure in GB. Boundaries correspond to 

virtual frontiers of interest; they allow to quantify the capacity of the system to trans fer 
power across it. Reinforcements, on the other hand, are physical assets that can be deployed 
in the system2. They affect the capacity to transfer power across one or more boundaries  
(also known as boundary capability). A given set of reinforcements can unlock additional 

boundary capability when they are deployed in the system. The interaction between 
reinforcements and boundaries is depicted in Figure 3. In this example, there are three 
reinforcement options (D, E, F) and three boundaries (B1, B2, B3); each combination of 

reinforcements may impact the boundary capability (BC) of the boundaries under 
consideration (for example, BCEF_B3, corresponds to the boundary capability of boundary B3 
when the set of reinforcements “EF” is in place). Some reinforcement combinations may not 

be possible because of rules governing their interactions (for instance, rule “F must follow E” 
makes reinforcement sets “F” and “DF” infeasible). The information that the TOs are required 
to provide and the SC team is required to review is similar to the table shown within Figure 3: 

for various combinations of reinforcements (not all of them, as the set of combinations grows 
exponentially with the total number of reinforcements) various boundaries are analysed to 
determine the resulting boundary capabilities that are unlocked. This process is conducted 

for selected years. 

                                                             
1 BID3 is a proprietary power market dispatch tool developed by AFRY. 
2 NGESO can propose no-build or reduced build options that can also bring network benefit. 
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Figure 3. Boundaries, reinforcements and boundary capabilities 

With the aim of including a probabilistic assessment of the boundary capabilities, the SC team 
has also developed a tool based on direct current (DC) load flow and Monte Carlo analysis to 

calculate the resulting distribution of boundary flows for input distributions of loading and 
generation conditions of the whole system, which is used at the stage to provide information 
of boundary requirements year round. 

Considering the reinforcement options that the TOs propose in response to the requirements 
reported in the ETYS, the SC team runs studies described in the SQSS to confirm the capability 

reported for each combination of options under consideration. The information produced by 
the SC team is used for a process of C&R of the capabilities that the TOs inform for each option 
and combinations of options based on the boundary studies they perform annually; the 

information provided by the TOs and reviewed by the SC team is then used to run the NOA 
CBA. The base network models and study guidelines are annually agreed among all parties 
involved in the assessment. 

The main elements in the SC team tasks are presented in Figure 4.  

 
Figure 4. System Capability team process 
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It is important to highlight some of the aspects of the procedure to calculate the boundary 
capabilities for the C&R process. The SC team in principle uses only one scenario of the FES, 

which is selected on the grounds of the level of stress the scenario imposes to the boundaries 
so they can find robust capability limits (the scenario is selected in agreement with the TOs). 
The target is to find the scenario which, on average across all boundaries, stresses the 

network the most. In the last three years the selected scenario has been the one labelled as 
two degrees (TD), which drives very high north to south power flows due to all the northern 
wind generation observed in Scotland. In the current NOA process, the community 
renewables (CR) scenario came very close to the network loading of the TD scenario; 

however, TD was selected under the consideration that using the same scenario as before 
generates consistency with previous year's results. If available resources allow, the SC team 
would run sensitivities against other scenarios and other relevant parameters (e.g. 

interconnector flows) to report the difference in the boundary capabilities for different 
system conditions.  

2.3. Cost-benefit analysis 

NGESO has to produce recommendations that fal l within the range of “proceeding” or “not 
proceeding” the next years’ actions to secure that the projects that are critical will be in place 

at the right time.  

To complete this task the NOA process starts by finding the optimal set of reinforcements in 
the system (from a cost-benefit point of view) for each of the four FES scenarios which 
describe four different future conditions for the system. The set of optimal reinforcements 

for each scenario is a subset of a total of near 200 projects (for the 2019-2020 NOA process) 
presented by the transmission operators. Each project has an “Earliest In-Service Date” (EISD) 
which corresponds to the earliest year the project could be in place, but the cost-benefit 
assessment will determine if it is better to build the reinforcement by EISD or later on. 

The deployment of a subset of projects is governed by interaction rules. Some projects:  

• can be mutually exclusive,  

• must follow other project(s), or  

• must happen together with other project(s).  

On top of these 3 interaction rules, some projects might not be feasible to build 
simultaneously because of conflicting outages in the network that are required to deploy the 

new infrastructure.  

It is also important to highlight that not all the combinations of projects have a corresponding 

boundary capability evaluation, as it was described in the previous section. Also, the impact 
of some combinations of projects on capability is available for some boundaries and not for 
others. If no information is available for a specific boundary given a set of reinforcements, the 

base case value for the boundary is considered. 
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Figure 5. Cost-benefit analysis process 

The previous rules and the considerations about information availability reduce the search 
space of combinations of reinforcements in each scenario to impact the boundary capabilities 

of the system. The search is conducted in two phases, phase I and II, also known as path 
finding and timing phases, respectively. As depicted in Figure 5, these two phases yield an  
optimal path of reinforcements for each scenario; the resulting paths enter phase III or logic 

phase, to calculate the permutations necessary to run the LWR process.  

The following sections describe the actions conducted within the phases of the CBA, 

highlighting duration, assumptions, inputs and results. 

2.3.1. Pre-processing and power system modelling 

The CBA analysis relies on the techno-economic 
modelling of the system to assess the trade-off 
between additional investment in transmission 

and the corresponding benefits associated to the 
reduction of the transmission constraints costs. 
NGESO uses BID3, which needs to be fed with 

information about the structure of the GB’s 
power system to describe current and future 
conditions. 

The boundaries that represent the GB system are 
defined in the ETYS. These boundaries interact, as 

illustratively depicted in Figure 6, defining areas 
that are then used to determine the generation 
technologies and aggregated load that represent 

each of them. Each area is represented as a 
balancing node, and then they are interconnected 
through fictitious transmission lines without 

transfer limits. The constraints that matter to 
limit flows between areas are those associated to 
the boundaries, which are imposed by 
determining all the transfers between areas that 

cross the boundary. For instance, for boundary 
B1, the flows through lines 2, 3 and 6 (𝐹𝐿2, 𝐹𝐿3 and 
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~ ~

~ ~

~ ~
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Figure 6. Boundary modelling 
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𝐹𝐿6) respectively are constrained by the boundary capabilities of B1 (𝐵𝐶𝐵1,𝐵𝐶𝐵1
𝑟𝑒𝑣) as follows: 

−𝐵𝐶𝐵1
𝑟𝑒𝑣 ≤ 𝐹𝐿2 + 𝐹𝐿3 + 𝐹𝐿6 ≤ 𝐵𝐶𝐵1 

A given set of transmission reinforcements may affect the value of BCB1 and other boundaries. 
To assess the effect of a set of reinforcements on constraint costs, the boundary capabilities 

are changed in BID3 when the reinforcement is considered.  The associated benefits are 
balanced out by the investment costs of the corresponding reinforcements. 

To get to this point, first it is necessary to determine the base network for GB, which is based 
on current system conditions and projects under construction. 

The interaction with neighbouring countries is assessed a priori, through a simplified 
description of the GB system and its neighbours. BID3 is run considering the conditions for 
each of the scenarios. This allows creation of bidding price functions for every time step for 

all neighbour countries. These price functions are later used to determine interconnector 
flows when assessing the detailed operation of GB. 

There is an additional consideration in regard to the general approach to model the system. 
The system displays a high degree of decoupling between the south region (England and 
Wales) and the north region (Scotland); reinforcements in one region show a relatively low 

impact on the distribution of the flows in the other region. By assuming that reinforcements 
in one region have low impact on the opposite region it is possible to limit the combinations 
of reinforcements that need to be studied to derive the capabilities  of the boundaries 

contained in the incumbent region. The base networks used to analyse each region are 
reinforced on the opposite region to avoid systematic bottlenecks that can degrade the 
quality of the result in the target region.   

BID3 models a linear economic dispatch of generators, based on a rolling horizon approach 
within each year under consideration. Years are assumed to be independent, which means 

that results are not transferred from one year to the next. The model is run based on 3 or 6 
hour steps, where the representing values for load and variable renewables in a given step 
are selected by choosing a random representative hour within each 3 or 6 hour period (e.g. 

for step 7-12, the operation could be represented by hour 9 for all  the time series involved). 
Variable renewable units, load and other input parameters are arranged in a database for all 
the hourly periods and all scenarios in the planning horizon.  

Another important aspect of the pre-processing stage is the consolidation of the so-called 
System Requirement Forms (SRF) into data ready to be used in the BID3 simulations. These 

forms are provided by the TOs and they contain the information about the different 
reinforcement options, including EISD, capital expenditure (CAPEX), outages, rules, boundary 
capabilities (thermal, voltage, stability), etc. 

When all the information required to run the CBA is ready, the ECON team executes the path 
finding phase. 

2.3.2. Phase I: Path finding  

The objective of this phase is to determine potential development paths for the network in 
each scenario and each region. All the analysis is run in Microsoft Excel in a purpose-specific 
arrangement of spreadsheets and macros (the tool is known as COMP) to prepare BID3 input 



   
 

16 

files and read results. This phase spans for around 4 weeks and 8 people are directly involved 
in the task (one for each scenario and each region). 

The process is broadly trial and error. By running the base network, the cost of each boundary 
constraint is determined for each year (and for each scenario). This signalises the boundaries 

that require capability expansion, hinting what reinforcements should be considered for the 
system. The boundary capabilities associated to the sets of candidate reinforcements to 
address the previous constraint costs are included in BID3; a new case study is run in order to 

determine the cost of constraints associated to the new boundary capacities. 

The results of the BID3 runs are arranged in the form of a matrix displaying boundaries on the 

rows and years on the columns. By exploring different entry years (after EISD) it is possible to 
visually recognize (heatmap) the changes in the constraint costs in each boundary to identify 
further reinforcement requirements.  

After quantifying the benefits of deploying different combinations of reinforcements, this 

information is used to determine the optimal entry year of each reinforcement. There are 
reinforcements that clearly dominate the pool of options; hence the resulting paths have 
common combinations that branch out. 

The resulting paths are compliant with the rules mutually exclusive, must follow, and must 
happen together. 

2.3.3. Phase II: Timing 

The most important aim of this stage is to check that outages associated to the construction 

of different reinforcements do not produce clashes that can make the path infeasible. The 
clashes strictly happen during lead-time because they are related to operation issues while 
building the reinforcements. If the clashes were not lead-time related, they would be part of 

the mutually exclusive rule. 

If a clash is found, the entry date of the reinforcements creating the problem is changed until 

the lead-time clash is resolved. If further clashes are created, the process continues  until the 
deployment of the reinforcements is clash-free. 

After solving all the clashes by displacing reinforcements, one of the paths found in the 
previous stage will yield the largest benefits. This path is considered optimal (one for each 

scenario for each region). All the reinforcements that are critical  in one or more of the 
scenarios associated to these paths enter the final stage (logic phase) to conduct the LWR.  

Phase II takes around 1 week to be completed using 8 people.  
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2.3.4. Phase III: Logic 

Each of the paths found in phase II is a collection of reinforcements and entry dates. Those 

reinforcements whose optimal entry date is the same as its EISD in any of the scenarios, are 
classified as critical. The logic phase looks to determine the LWR strategy among all the 
possible permutations produced by proceeding with or delaying each of the critical options.  

Figure 7 presents an example to depict the concept of critical reinforcements. Let us consider 

there are three scenarios and four options in each region of the system. After running phases 
I and II, the results will look as presented on the left-hand side table in Figure 7. All 
reinforcements in the north region appear active in the paths found in phase II for one or 

more scenarios. In particular, reinforcements A and D become optimal on their EISD, which 
means that they are labelled critical.  

Let us now assume that there are no critical options in the south region. Then, as depicted in 
the right-hand side diagram in Figure 7, all non-critical reinforcements optimal entry dates 
(red boxes) for each scenario are fixed to the value found in the previous phase. The critical 

options entry dates are permuted between the optimal entry date (EISD for some scenarios) 
and delaying it one year, thus creating new deployment paths that may require running 
further studies in BID3 to determine their operational costs.  

It is relevant to highlight that those reinforcements that need to be deployed by EISD are 

critical because any delay in the decision about proceeding would prevent the reinforcement 
to become available when the system needs it (according to the optimal paths found in the 
previous phases). 

The process of permuting all the critical options between the states “proceed” or “delay by 
one year” gives form to the so-called “single year LWR”. Considering the example presented 

in Figure 7, the results for the permutations of the two critical options would look as 
presented in Figure 8. The four permutations produce 12 different cases, considering that the 
entry year for the reinforcements vary depending on the scenario. Each case will have a 

Figure 7. Example for a system with 2 regions and 8 reinforcements 



   
 

18 

different net present value (NPV), which will 
allow to compare the four strategies 

(permutations), calculate the regrets and in turn 
determine the minimum (among strategies) 
maximum (among scenarios) regret. In Figure 8, 

the strategy that yields the LWR is permutation 
3, which considers proceeding with both options. 
This yields the Proceed recommendation for 
reinforcements A and D, that is, over the 

following year the work on those reinforcements 
should continue, or start, to maintain the EISD.  

The Delay recommendation is given when an 
option is optimal and critical but delaying it by 

one year results in lower regrets. This means that 
phases I and II show that the optimal time to 
deploy the expansion is EISD for at least one of 
the scenarios, but when permutating and 

running the LWR, delaying its deployment by 1 
year is optimal from the point of view of the LWR 
metric. Another recommendation that can be 

deduced from this process is to Hold. For those 
reinforcements whose optimal in-service year is 
later than EISD there is no pressing need to 

continue developing that option. Delivery of this 
reinforcement should be delayed by at least one 
year.  

The process can also result in the Stop recommendation. A reinforcement that is already 
being built or procured, which does not appear in the optimal paths stemming from phases I 

and II in the current NOA, should not continue. In a similar fashion, an option that was not 
being built and does not appear in the optimal paths, gets the recommendation Do not start. 

   
  

Figure 8. Permutations and calculation of regrets 
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2.4. Network Option Assessment for Interconnectors 

NOA for Interconnectors (NOA IC) aims to provide a quantified assessment of the potential 
benefits of increased interconnection with neighbouring countries. The NOA IC and the NOA 
are not interdependent; the results found in the NOA are used as the input information for 

the NOA IC, but the results of the NOA IC are not fed back into the current NOA process, they 
are used as an input in the next year’s FES process, hence influencing also next year’s NOA 
process. 

The NOA IC methodology is a techno-economic 

assessment of the optimal level of interconnection 
capacity for GB. It evaluates the social economic 
welfare (SEW), that is, the overall benefit to society 
of a particular course of action, which includes 

pondering constraint costs and capital expenditure 
costs of both the interconnection capacity and 
network reinforcements necessary to increase the 

transfer capabilities between GB and selected 
countries in Europe. The NOA IC does not assess the 
viability of real projects, it only indicates the amount 

of interconnector capacity and the countries to 
interconnect that create the most SEW. Currently, 
the path for expansion of interconnection is 

produced for each scenario independently. 

Figure 9 presents a diagram of the general steps 

taken to run the assessment. Firstly, the list of 
interconnection location options is determined, and 
each of them is assigned an interconnection capacity 

of 1GW. Second, in the context of a base network 
(results of current NOA and current interconnection 
levels) each individual alternative is added at a time, to assess its SEW. After running the 

analysis for all the options, the one with the most SEW is added to the base network. The 
process continues until all interconnections have been added or if none of the remaining 
options generates positive SEW. After defining the set of 1GW expansions that result in 
positive SEW, an additional step of adding 0.5GW to the subset of selected expansions is 

conducted to determine if more SEW can be captured from additional interconnection levels. 
The optimal deployment path is presented for each of the scenarios under consideration. 

  

Figure 9. NOA IC steps 

 



   
 

20 

3. Literature review and international best practices 

3.1. Uncertainty in electrical power system Transmission Expansion Planning (TEP) 

3.1.1. Uncertainty sources 

Power systems are currently heavily influenced by development of energy policy, growth of 
new technologies and evolution of new business models. All these lead to high and growing 

uncertainty. This section reviews the main uncertainty sources influencing transmission 
expansion planning (TEP). CIGRE’s review on uncertainty in optimal power system planning 
[6] is the starting point of this analysis.  

1. Load growth: Uncertainty in demand development has been traditionally one of the 
system planner’s main concerns. In fact, most planning methodologies already include 

some level of uncertainty in demand. Currently, demand patterns are expected to change 
due to electrification of end-uses (e.g. cooking, heating) and the appearance of new 
technologies (i.e., electric vehicles, electric heat pumps). Furthermore, these new 

technologies can potentially be responsive to system conditions through demand side 
management (DSM), distributed storage, etc. In this context, there are high levels of both 
short-term (e.g., higher variability and uncertainty, price-responsive demand) and long-

term (e.g., levels of electrification of other sectors, energy efficiency measures) 
uncertainties associated with the demand side. 

2. RES growth: The penetration level of renewable energy sources is increasing in the 

system due to energy policies and cost reduction, especially in the case of Distributed 
Energy Resources (DERs), which has changed the traditional view of the distribution 
network as a passive network. These new elements need to be included in both network 
operation, considering the increase in variable and partly unpredictable and non-

dispatchable generation, and therefore increasing operational uncertainty, as well as 
network planning, considering the uncertainty in volume, location and timing of 
renewable energy sources (RES) connection. 

3. Commercial technologies: Traditionally, power systems have required high investments 
and considerable lead times to implement network changes. Nevertheless, new 
technologies (i.e., DSM, battery storage, etc.), can result in lower investment costs and 

shorter lead times compared to traditional infrastructures. However, they are 
characterised by cost functions that are largely based on operational cost (which are 
typically uncertain) rather than investment costs as for traditional asset. This creates 

issues in how to compare these two types of assets (traditional investment-heavy 
infrastructure with relatively small operational costs and low-investment asset with 
considerable operation costs), also considering that, depending on the regulatory 
framework, new technologies may not belong to or be operated by the system operator.  

4. Regulatory and energy policy environment: Energy policy and regulation are currently 
under continuous revision in most countries, being a great source of long-term 
uncertainty. A few of the most remarkable ways in which regulation and policy might 

affect power systems are the following: 
a. Influence the cost of certain technologies by directly supporting their development 

using subsidies or by taxing other technologies. For instance, subsidies to promote 

residential PV are a common practice in many regions of the world.  
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b. Introduce new schemes which affect the paradigm of the sector. For instance, 
enforcing the consideration of environmental issues, promoting the development of 

certain regions, or considering interconnection objectives with other countries.  
5. Electricity markets and regulation: Closely related to energy policy, in regions with high 

decarbonization targets there is an ongoing revision of power market structures and 

mechanisms that can have crucial effects on economic dispatch and power flows. 
Furthermore, new technologies have triggered the appearance of new markets, which 
are currently under study. For instance, the increase of renewable penetration level and 
the full retirement of coal plants by 2025 is challenging NGESO to fulfil its role of reliably 

operating the GB power system. However, the GB electricity wholesale market does not 
offer enough incentive to build relatively low-carbon conventional generators, e.g., 
combined cycle gas turbines and biomass plants, which are required to enable adequate 

reserve margin in winter peak periods. Therefore, a capacity market mechanism has been 
introduced to give extra financial support to peak capacity contributor since 2014 [7]. 
Similar challenges are being faced in other jurisdictions worldwide, for example in 

Australia 
6. Generation mix: Changes in the generation mix are a source of long-term uncertainty as 

well. As has been mentioned throughout this section, new technologies have emerged 

and are being introduced with high penetration in power systems worldwide, changing 
the generation mix in most regions. This change may be driven by policies (e.g., subsidies 
for renewables), extreme events (e.g., catastrophic events leading to closure of nuclear 

generation), new ancillary services requirements in the presence of renewables and 
asynchronously connected resources (e.g., requirements for faster frequency response 
and minimum system inertia), etc. 

7. Investment cost: The uncertainty in (reduction of) investment costs of new technologies 

increases the uncertainty of the planning problem, as it might change the optimal 
investment option (both in resources portfolios as well as in asset to facilitate the 
development of new resources) in a few years. For instance, the cost reduction of new 

technologies such as high-voltage direct current (HVDC) might lead to a totally different 
optimal design of reinforcement. The substantial cost reduction of renewable generation 
and batteries could also substantially impact the planning exercise. 

Hence, in this rapidly evolving and highly uncertain context there are a number of new 
opportunities but also risks. Planning the electricity network using modelling that is able to 

consider rightfully all these uncertainty elements is therefore key to provide cost-effective 
solutions. 

3.1.2. Uncertainty factors in TEP 

As mentioned above, there are seven key uncertainty factors that have been identified in the 
TEP process. Based on the documents ([1]–[3], [6], [8]–[13]), which describe the current TEP 

practices of six countries across four continents, Table 1 summarises the uncertainty factors 
currently being considered or which are material but are not considered by corresponding 
network planner.  

It can be noticed that load growth and RES uncertainty is being considered in all countries, 

although State Grid considers the increasing penetration of RES in a deterministic way, as the 
planning of renewable energy in China is under the jurisdiction of the National Energy Agency. 
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As for generation mix, this uncertainty factor has been widely acknowledged by all six 
network planners that have been reviewed, but only the Australian Electricity Market 

Operator (AEMO) and EirGrid have made relevant considerations on the impact of evolving 
generation mix, e.g., by setting new frequency response requirements and inertia constraints, 
limiting the maximum output of single generator to reduce contingency size, etc. NGESO has 

also begun to assess the impact of increasing renewable penetration by including rate of 
change of frequency (RoCoF) in its economic dispatch modelling.  

With regards to new technologies and commercial solutions, which can range from direct 
controls of existing assets (i.e., generators intertrip and de-loading, demand response) or 
investing non-network based assets (i.e., batteries), although there are relevant technology 

deployments in France, UK, Australia and Ireland, these alternative options have not been 
systematically considered in transmission network planning to defer or avoid investments of 
traditional infrastructures (i.e., power lines, substations, etc.) . It is worth to highlight that 

NGESO has considered using commercial services as part of its network reinforcement 
recommendations. 

As for new technology’s investment cost uncertainty, this factor may directly influence the 
planning decision of holding or proceeding with specific reinforcement options. However, 
most network planners do not thoroughly consider economic risks and benefits of holding 

investment decisions, as for example carried out in the NOA process. It is worth mentioning, 
however, that State Grid in China has a department which focuses on monitoring and 
predicting costs of equipment, and this information is used in technology selections for 

reinforcement.  

The uncertainty of regulatory and policy environment is commonly embedded within the 

scenario design process. For example, governments’ policies on decarbonisation target can 
be interpreted as various expected futures, such as high renewable energy penetration level, 
electrification of different sectors, widespread retirement of coal plants, etc. These actions 

determine key projections in different scenarios, as in the case of National Grid’s Two Degrees 
scenario. 

With regards to the uncertainty embedded in energy markets and regulation, National Grid, 
AEMO and EirGrid simulate wholesale and balancing services market operation by 
implementing, with different levels of approximation, dispatch and redispatch processes and 

bidding behaviour in their operational model, which gives their network planning process the 
capability to capture the potential impact of market changes. 
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Table 1. Uncertainty factors of TEP considered by different transmission network planners ([1]–[3], [6], [8]–[13]) 

“✓” : exist and considered; “ ” : exist but not considered; 

Country Uncertainty factor 

Load 
growth 

RES 
growth 

Generation 
mix 

New commercial 
solutions 

Technology 
Investment cost 

Regulatory 
environment 

Energy market 
and regulation 

France 
(RTE) ✓ ✓    ✓  

China 
(State Grid) ✓    ✓   

UK 
(NGESO) ✓ ✓  ✓  ✓ ✓ 

Chile 
(CEN) ✓ ✓      

Australia 
(AEMO) ✓ ✓ ✓   ✓ ✓ 

Ireland 
(EirGrid) ✓ ✓ ✓   ✓ ✓ 

3.1.3. Modelling Uncertainty through Scenarios 

Scenarios allow planners to model different evolution of uncertain variables as well as their 

correlations. This strategy is preferred in most decision-making problems that tackle planning, 
as it provides a balance between analysing a broad range of futures and (technical) detail in 
such analysis. Furthermore, they can be applied to some of the most common methodologies 
used in decision making, including, potentially, methodologies based on probabilistic 

approaches (in which scenarios have specific associated weights). Scenario analysis or 
“scenario-based” approach is currently used by most system planners around the world to 
model the uncertain future [6].  

The number of characteristics of scenarios used in twelve selected countries are listed in Table 

2. It can be noticed that most planners prefer to use less than five scenarios to represent 
plausible futures, e.g., envisaging nuclear or coal plants retirement, increase of DER 
penetration, electrification of heating and transport, etc.  

In some cases, the system planner builds scenarios or performs further studies to represent 
(technical and economic) sensitivities around core scenarios. For example, AEMO has 

developed two additional scenarios “Increased role of gas” and “Early exit of coal -fired 
generation” around its Neutral scenario to represent two possible important 
opportunities/risks in the future [10]. Terna (Italian grid operator) also uses two extra 
scenarios to represent sensitivity of potential futures rather than the expected future [14]. 

Spanish transmission network planning uses three scenarios (central, superior and inferior) 
to represent various assumption of the relationship between electricity consumption and 
growth domestic product (GDP) growth [15]. NGESO is currently using a Monte-Carlo 

approach in the network assessment of the “Two Degrees” scenario, to add robustness in the 
analysis of the boundary transfer capability with/without proposed reinforcements, as this 
scenario is considered to be the one with highest network stress among all four scenarios. In 

Swissgrid’s Strategic Grid 2025 proposal [16], two marginal scenarios, “Sun” and “Stagnancy”,  
are built to check the long-term robustness of reinforcement options proposed in the two 
core scenarios, whilst the two marginal scenarios are not used to identify any additional 

network reinforcement requirement. France, Belgium and Germany considered 3-4 scenarios 
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to consider the impact of phasing out nuclear and coal plants with increasing penetration 
renewable penetration level [17]–[19]. In the cases of PJM and China, only single demand and 

generation portfolio projections are applied in market efficiency (economic) and reliability 
studies. PJM also emphasised that they also performed studies with different scenarios 
considering the potential impact of Clean Power Plan imposed by the American government; 

however, no detail information regarding the scenarios and relevant case studies were given 
in its planning report [20]. 

Given the complexity of both technical and economic analysis associated with scenario-based 
planning, as well as the unfolding of uncertainty, some system operators have also envisaged 
to reduce the number of scenarios that are considered in the process. For example, the 

Chilean SO has decided to decrease the number of scenarios from five to three from 2020, 
while EirGrid has removed the “Slow-Progress” scenario from its Tomorrow’s Energy 
Scenarios 2019 [11].  

As an important point to note, none of the countries listed in Table 2 explicitly considers 
weighting scenarios in their CBA process, as there is no explicit probability assigned to the 

scenarios used in the planning. 

Table 2. Number of scenarios used in transmission planning in ten selected countries ([1], [3], [20], [6], [9], [11], [13], [14], 

[16]–[18]) 

Australia UK Italy Spain Switzerland France Belgium Germany China PJM(US) Chile Ireland 

5+23 4 (14) 1+25 3 2(4)6 4 3 3 1 17 5 3 

3.1.4. Technical characteristics of models used in TEP 

Other than identifying existing uncertainty factors and scenarios in several countries, the 
technical details of the TEP models used by the seven selected countries already discussed 

above are listed in Table 3. The table is divided into four sections, which follow the 
methodology of TEP explained for the NOA process in Figure 4 and Figure 5, which is 
considered to be common practice worldwide. More specifically, the four sections are 

completed in a sequential way in the transmission network planning process: 

1) Economy zonal flow assessment: This analysis is aimed at mapping the variation of 
the power flow between zones without imposing line limit constraints, which reflects 
the flow requirement of an efficient electricity market in the future. NGESO uses the 
concept of boundaries instead of zones in the identification of transfer requirement. 

2) Network zonal flow assessment (current network): The security constrained analysis 
is used to identify the transfers at peak demand period and other snapshots which not 
necessarily reflect system peak demand but can seriously stress the transmission 

network between specific zones. 

                                                             
3  Two additional scenarios are built to represent the sensitivity of policy and risks faced by the Australian 
National Electricity Market (NEM). 
4 Only the “Two Degrees” scenario is used in the network transfer capability assessment of NOA. 
5 Two scenarios are built to represent the sensitivity of the core scenario instead of reflecting the expected 
future. 
6 Two marginal scenarios are constructed to test the robustness of reinforcement options, but the scenarios are 
not used to determine additional reinforcement requirements. 
7 PJM only explicitly uses one demand forecast scenario in its market planning, but it also mentioned in [22] that 
it would consider the impact of government policy (i.e., clean power plan) on generation, but no detail  
information of relevant approaches is given. 
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3) Network reinforcement options assessment: The reinforcement options have been 
identified at this stage, but their additional contribution to zonal transfer capability 

needs to be assessed with network constraints such as based on steady-state thermal, 
voltage and stability analysis, in both the intact system and the system with 
contingencies. This quantification is carried out in this assessment. 

4) System operating cost assessment: After retrieving the transfer capability with 
various reinforcement options, these options are applied in the operational model to 
generate system operational cost in the relevant scenarios, whose results are then fed 
into the CBA process determining the best option for reinforcement. 

The cycling period of the transmission network planning studies and the relevant reports are 

in the range of 1 to 10 years. For instance, NGESO and EirGrid carry out the transmission 
planning for the whole system every year, while Swissgrid only carries out the planning every 
ten years considering moderate changes of demand and generation mix.  

As shown in Table 3, the planning horizon is generally in the range of 15 to 20 years, except 
for Swissgrid which only defines a transmission expansion plan for the next 10 years. 

However, Swissgrid would then perform technical analysis against the robustness of its 
reinforcement options for a 20 years horizon.  For PJM, the planning activity is split into two 
parts: 1) the near-term planning with 5 years forward period to address reliability issue s; 2) 

long-term planning with up to 15 years forward period to reduce network congestion cost 
and provide other economic benefits. 

For the economy transfer capability analysis, the time resolution of simulation varies from 
15 minutes to few hours across different countries. One practice to be highlighted is that both 
Chile and Australia use load-block techniques which can reduce simulation time steps by 

clustering several time periods, but only for the periods with similar demand level rather than 
adopting it with a fixed time length. This action can increase computational efficiency while 
only marginally affecting the accuracy of the results compared to fixed-time clustering. At the 

same time, China and Chile perform simulations only with typical day(s) of each month and 
then scale them up to represent transfer volumes variation or annual operational cost.  

For the network assessment of zonal transfer capability, there are countries which perform 
more than a winter peak snapshot analysis. For example, Chile does not only perform 
Winter/Summer peak snapshots, but also analyses specific snapshots that are likely to be 

associated with maximum levels of power transfer across relevant zones. As mentioned 
above, NGESO use the concept of boundaries instead of zones to reflect a wider range of 
transfer capability requirements in combination of several zones. 

With regards to the network assessment with a combination of reinforcement options 
shown in Table 3, most countries prefer to perform the analysis at various demand levels to 

mimic different system operating condition besides the peak snapshot. Furthermore, it seems 
that most countries under consideration perform thermal, voltage and stability tests. This is 
done for the network under different types of contingencies, such as N-1 and N-1-1. On the 

other hand, other SOs perform extra tests such as reactive power management and frequency 
stability assessment, like in the case of AEMO.  

For the operating cost assessment of reinforcement options, which is used in CBA process, 
different countries use different sampling period varying from 1 year by NGESO up to 10 years 
by State Grid and Swissgrid. Additionally, with regards to the modelling of system operation, 

some countries use simple economic dispatch, while other countries adopt unit commitment 
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analysis to better capture the technical characteristics of conventional generators (minimum 
up- and down-time, start-up/shut-down activities, etc.). The technical constraints of system 

operation also vary in the simulation performed by different planners. In terms of modelling 
of the network, the maximum flows of individual transmission lines are typically calculated 
according to thermal, voltage and fault-clearing standards, then the results are mapped as 

numerical constraints in economic-dispatch/unit-commitment. However, the transfer 
capability between zones applied in the economic dispatch model SPER (which is used by 
State Grid) is more strictly constrained by monthly energy exchange allowances between 
zones or energy export allowances of specific generators, while the sum of capacity of lines is 

used as the upper limit for the transfer capability [21]. With regards to ancillary services, most 
countries model these as “lumped” spinning reserve through derating online plant capacity, 
while AEMO also models the requirement of minimum inertia level due to RoCoF, which can 

be crucial for low-inertia system operation. PJM emphasises that a security constrained unit 
commitment model is applied for market efficiency analysis which is used to produce input 
for CBA. 

Most importantly, for investment decision-making tools, only NGESO and AEMO appears to 
use LWR8, while other countries use deterministic approach to obtain the best reinforcement 

option that brings NPV maximisation in each scenario. However, from the review conducted 
it is unclear how a final, integrated decision across scenarios would be made.  It is also worth 
mentioning that PJM also uses a benefit-to-cost threshold (currently 1.25) to screen individual 

transmission enhancement proposals. The benefit-to-cost ratio is calculated by using the 
present value of project’s annual benefits over the first 15 years divided by the present value 
of the revenues required over the same period [22]. 

In the following section we will focus on assessing the implication of using different decision-
making tools.  

                                                             
8 AEMO are also considering adopting a LWR approach in their Integrated System Plan (ISP). 



 

   
 

Table 3. International practice of technical modelling characteristics in TEP process ([1], [2], [14], [16]–[18], [23]–[26], [3], [6], [8]–[13]) 

Simulation 
Stage 

features Countries 

UK  
(NG ESO) 

France  
(RTE) 

China  
(State Grid) 

Chile  
(CEN) 

Australia  
(AEMO) 

Ireland  
(EirGrid) 

Switzerland 
(Swissgrid) 

US 
(PJM) 

Spain 
(REE) 

Study rolling period Every year Every 2 years Every 5 years Every year Every 2 years Every year Every 10 years 
Every 1-2 

years9 

Every 6 years 

Planning and CBA horizon 20 years 15 years 15 years 20 years 20+ years 20 years 10(2010) years 5/1511 years 
10-20 years 

Zonal flow 
assessment 
(Economy) 

Software BID3 ANTARES SPER OSE2000 PLEXOS Not available 

N/A12  

Not available Not available 

Simulation 
resolution 

3-6h (up to 1 hour)  Hourly 15 mins to hourly 8 load blocks13 Few load blocks Hourly  Hourly Hourly 

Simulation 
timescale 

Whole year Whole year 
Typical day in each 
month 

Typical weekday/ 
weekend in each 
month 

From snapshot to 

whole year14 
Whole year Whole year Whole year 

Zonal flow 
assessment 
(Network) 

Software DIgSILENT/POUYA CONVERGENCE PSD-BPA DIgSILENT 

N/A 

PSS/E, DSA Not available Not available 

Simulation 
timescale 

Winter peak 
snapshot and 
year-round  

Snapshots Typical snapshots 
Winter/summer 
and transfer peak 
snapshots 

Peak and other 
demand 
snapshots 

Winter and 
summer peak, 
and light load 

15snapshots 

Winter and 
summer peaks 

System 

condition 
N-1/N-D N-1 N-1 Intact/N-116 N-1 N-1/N-1-1 N-1 

Reinforceme
nt options 

Software DIgSILENT/POUYA CONVERGENCE PSD-BPA DIgSILENT PSS/E PSS/E, DSA Not available Not available Not available 

Sampling 
frequency Every year17  Not available 

Every typical 

year18 
Every year Every year Not available Every 10 years Every 2-3 years Every year 

                                                             
9 PJM carries a 24 months cycle for long-term and long lead-time projects and a 12 months cycle for near-term projects to address reliability criteria violations. 
10 Scenarios for 2035 in “Strategic Grid 2025” [16] are only used for robustness evaluation of reinforcement options.  
11 Near-term planning only carried out on year 1 and year 5 models, while long-term planning has a 15 years planning horizon. 
12 Swissgrid directly tests different reinforcement options instead of building up boundaries.  
13 Using load-block methods to aggregate similar demand periods into one time-step in the simulation. 
14 Using snapshot simulation to determine which reinforcement options appear to be economic options and then including them in whole year analysis. 
15 Light load conditions are referred to the demand level as low as 30 percent of summer peak to address high voltage issue in network [22].   
16 N-1 compliance is checked at peak transfer condition, while the transfer during summer and winter peak periods are examined in an intact system condition. 
17 Network assessment is performed every year with the corresponding demand and generation profiles, while the corresponding network configuration of each year is selected from four potential settings, which 
are the networks in 3, 5, 7 and 10 years (counting from the current year) respectively.  
18 One typical year is chosen from next 5-10 years range and another one is chosen from next 10-15 years range. 

 



 

   
 

assessment 
(Network) 

Simulation 
timescale 

Winter peak 
snapshot and 
year-round 

Snapshots Typical snapshots 
Peak demand 
snapshots 

Peak/low demand 
snapshots  

Peak and other 
demand level 
snapshots  

Peak congestion 
snapshots  

Winter and 
summer peak 
snapshots 

Winter and 
summer peaks 

Constraints Thermal; Voltage; Stability; Contingency analysis 

Reinforceme
nt options 
assessment 
(Economy) 

Software BID3 ANTARES SPER OSE2000 PLEXOS Not available Not available Not available Not available 

Sampling 
frequency 

Every year Not available Every typical year Every year Every 5-7 years Every 5 years Every 10 years Every 4 years Every year 

Simulation 
resolution 

3-6h (up to 1 hour)  Hourly 15 mins to hourly 8 load blocks  
Daily energy limit 
to hourly power 
balance 

Half hourly Hourly Hourly Hourly 

Simulation 
timescale 

Whole year Whole year 
Typical day in each 
month 

Typical weekday/ 
weekend in each 
month 

Whole year Whole year Whole year Whole year Whole year 

Operationa
l model 

Economic 
dispatch 

Unit 
commitment 

Economic 
dispatch 

Economic 
dispatch 

Simplified 19  unit 

commitment 

Economic 
dispatch 

Economic 
dispatch 

Security 
constrained 
unit 

commitment 

Economic 
dispatch 

Constraints 

• Network 
constraints 

(thermal, 
voltage, 
stability) 

• Lumped 
spinning 
reserves 

• Network 
constraint
s (thermal, 
voltage 
and 

stability) 

• Lumped 
spinning 
reserves 

• Static 
network 
constraints  

• Lumped 
spinning 
reserves 

• Network 
constraints 
(thermal, 

voltage and 
stability) 

• Lumped 
spinning 
reserves 

• System 
inertia 
constraint 

• Network 
constraints 
(thermal, 
voltage and 
stability) 

• Lumped 
spinning 

reserves 
• System 

inertia 

constraint 

Not available Not available Not available 

• Network 
constraints 
(thermal, 

voltage and 
stability) 

• Lumped 
spinning 
reserves 

• System 
inertia 

constraint 

Reliability 
index 

LOLE 
LOLE/LOLP/EEN
S 

EENS EENS20 EENS Not available Not available LOLE LOLE and LORE 

Decision making tools LWR Not available NPV maximisation  NPV maximisation LWR Not available Not available NPV 
maximisation 
and 

benefit/cost 
ratio 

NPV maximisation 

                                                             
19 Only some generators have active start-up/shut-down constraints. Each simulation time horizon is two days, with one-day results retrieved. 
20 EENS is used as a penalised variable in the ED optimisation rather than as a compulsory standard to meet. 
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3.1.5. Considerations on international best practices for TEP  

Based on the review performed, there are few key points that it is possible to highlight: 

• Planning uncertainty is typically dealt with by scenario-based approaches. 

• Most countries adopt a (very) limited number of scenarios in their planning 
methodologies, often building sensitivities around main scenario(s) rather than new, very 
different scenarios per se. 

• No probability weight is associated with the considered scenarios, possibly again also 

based on the fact that many scenarios are only sensitivities.  

• Scenarios seem to be typically analysed independently and then planning options are 
chosen based on specific rules to make an integrated decision across several scenarios, 
while only NGESO performs an integrated analysis across multiple scenarios via LWR. 

Based on our review and to the best of our knowledge, NGESO’s NOA methodology to plan 
and reinforce the transmission network seems to be at the forefront of the state of the art of 

planning under uncertainty. This is essentially because: 1) there is a clear and publicly 
available methodology that describes how an investment decision is performed across 
multiple possible and uncertain scenarios that are all simultaneously accounted for in the 

decision making process; and 2) the methodology allows consideration for the potential 
negative consequences of an investment decision (basically via using the regrets as risk 
measure – see further below), rather than, for example, just going for onerous investments 

that might be driven by the most extreme case (this would correspond to a minmax cost 
approach – see again further below). However, before providing further methodological 
considerations and explanations for planning under uncertainty, we should also point out a 

clear opportunity for improvement in the NOA process which has emerged from our studies. 
This is the inclusion of additional operational snapshots in the technical analysis besides the 
current winter peak assessment, which could be considered in light of increasing operational 
complexity and uncertainty that might drive worst case flows across boundaries at different 

times of the year. Similarly, inclusion of new operational characteristics and constraints, such 
as associated with low-inertia conditions, could be desirable.   

3.2. Decision making under uncertainty 

The previous section has focused on uncertainty, the uncertainty sources and their inclusion 

in the transmission expansion planning in different countries, as well as modelling those 
uncertainties through scenarios. When a system planner faces different scenarios to model 
uncertain future conditions, the TEP problem effectively becomes a decision-making 

problem. However, as shown in 3.1.4, most countries do not include advanced methodologies 
to model decision-making problems. In most cases, the planner only assesses the NPV for 
individual scenarios, without combining scenarios in any (at least publicly clear) way. Different 
rules, often based on practical experience, are then likely to be used to select the 

reinforcement options that may perform best across multiple scenarios. In fact, the 
international survey from section 3.1.4 shows that only NGESO is considering the TEP problem 
including uncertainty as a decision-making problem in the sense of combining scenarios (via 

LWR). 

Nevertheless, in the research literature there are several examples of applications where 
transmission (and distribution) expansion planning under uncertainty could be treated as a 
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decision-making problem. The most relevant and well-known methodologies are probabilistic 
assessment (which may be seen as a relatively simple version of the more general field of 

stochastic programming) and min-max (or minimax), applied to both costs (min-max-cost, 
MMC) and regrets (min-max-regret, MMR, also often indicated as least worst regret, LWR). 
Robust programming, min-min cost, and real options are other methodologies potentially 

available to solve transmission expansion planning problems with uncertainty, while certain 
applications of these methodologies also include specific risk measures that may be relevant 
for TEP. We will briefly review these methodologies in the following subsections. 

3.2.1. Probabilistic assessment/stochastic programming  

Probabilistic assessment (also referred to as “probabilistic choice”) falls within the more 

general stochastic programming/stochastic optimization framework, which may also include 
multi-stage decisions. This is the somehow intuitive development of a deterministic approach 
whereby uncertainty is introduced through scenario analysis. It has a flexible formulation that 

has drawn much attention, including efforts to develop a canonical framework, equivalent to 
the one found in deterministic optimization [27], [28]. 

The simplest formulation of probabilistic assessment problems is based on the use of 
probabilities applied to different scenarios to enable the selection of the “statistically” best 
solution. In fact, it originated from assessing the uncertain outcome of a significant number 

of experiments, in which the frequency of occurrence is close  to the probability value 
assigned. These experiments would typically be carried out in fixed conditions, under the 
same set of laws. The formulation of a probabilistic approach can be readily adapted to the 

transmission expansion planning problem, in which a limited number of scenarios are 
assigned (probability) weights and the best investment strategy is selected to optimise (e.g., 
minimise, in the case of cost) a given attribute (e.g., net present cost) across scenarios 
through a linear composition of its values weighted with the respective scenario probabilities 

[29], [30].  

3.2.2. Min-Max 

This general methodology, much used in the field of game theory, uses two nested 
optimisations (min{max{}}) to model the decision-making problem under uncertainty. It 

requires a more complex formulation than stochastic programming, but in principle does not 
require the explicit assignment of weights for each scenario, which is considered as an 
advantage by system planners. However, adequate scenario definition may then become of 
critical importance, because there might be “no compensation” among scenarios, as generally 

implied in stochastic programming. In a TEP problem, these two nested optimisations are 
most commonly used with two attributes, namely, cost (min-max cost) and regret (min-max 
regret). 

3.2.2.1. Min-max cost (MMC) 

In min-max cost (MMC), the two nested optimizations use cost as the value attribute. This is 

intuitively a very conservative approach that would be undertaken by a (most) risk-averse 
decision maker, whereby a high-cost scenario, and the desire to hedge against its 
consequences, will eventually define the selection of the optimal investment strategy.  
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3.2.2.2. Min-max regret 

Min-max regret (also referred as LWR in NOA) is a version of the general nested min-max 

optimization where the value attribute is now a regret. Regrets are based on an ex-post 
evaluation of the decision maker’s perception regarding its decisions, usually expressed in 
monetary terms. The selected option is the one that minimizes the regret felt by a decision 

maker after verifying that the decision he had made was not optimal given the future that 
would have eventually actually occurred [22]. 

Regret functions can be built with different levels of risk-aversions, including non-linear 
functions to model unacceptable outcomes for the decision makers (e.g., “vetoes” and 
“absolute preferences”).  

It has been pointed out that by shifting the focus on the decisions rather than the solutions 
(as in the probabilistic approach), LWR may reflect better the real decision making process 

[29], [30]. Furthermore, when regret is used rather than cost (as in min-max cost), a high-cost 
scenario does not necessarily trigger the strategy selection, because regret compares the 
relative performance of strategies within each scenario. This is a considerable drawback of 

min-max cost when compared to LWR. On the other hand, it has been discussed within 
previous NOA methodology reviews [31] that the use of LWR may also have drawbacks. For 
example, while LWR may not be directly sensitive to the highest-cost scenario, it may still be 

sensitive to the relationship between “worst” and “best” scenarios, so that it is again possible 
that extreme (and particularly high-cost) scenarios may somehow drive the results. 
Furthermore, the methodology may not be robust to the inclusion of “irrelevant” investment 

options, which may lead to “spurious” decisions. In contrast, a min-max cost approach does 
not suffer from the latter issue21. 

It is also important to notice that, as discussed by Arroyo et al [32], and as in classical literature 
on decision making under uncertainty [33], [34], regrets can be used as a measure of risk (see 
also below for other risk measures). A methodology such as LWR that aims to minimise 

regrets (and therefore risk) is therefore intrinsically risk-averse. 

3.2.3. Robust programming  

In robust programming or robust optimization, the decision maker imposes feasibility for all 
possible scenarios, even if not all the scenarios but only the boundary ones are explicitly 
modelled. Since the worst-case scenario must be feasible too, it effectively becomes the 

scenario driving the decision. Therefore, the risk aversion of this methodology is again highly 
dependent on the scenario definition. Robust optimization can implicitly account for all 
scenarios within the uncertainty set through efficient search algorithms, an advantage when 

dealing with large sets of scenarios compared to the previous methodologies[35].  

3.2.4. Min-min cost 

Min-min cost has a similar formulation to min-max cost, that is, a min{min{}} nested 
optimization that does not require the explicit assignment of weights. Conceptually, it is 
opposite to min-max cost, since it aims to obtain the highest benefits by minimizing the cost 

                                                             
21  However, with regards to NOA, as all the proposed options are plausible, technically valid and checked 
beforehand, the risk of including “irrelevant” options in the LWR analysis should be fairly l imited.  
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in the lowest-cost scenario. In the context of a decision-making problem, it is used when a 
risk-seeking decision maker is willing to obtain the maximum benefits from uncertain 

scenarios, essentially regardless of risk. 

3.2.5. Real options 

Real options analysis is a methodology coming from financial options theory. Its application 
comes from the belief that evaluating investment options using the traditional indicators such 
as NPV, net present cost (NPC) or the discounted cash flow (DCF) is not adequate in a number 

of investment problems, including for TEP. This belief mainly comes from the assumptions 
regarding the irreversibility of investments that these metrics make, which cannot capture 
realistically the flexibility of the decision-making process. In this light, the framework 

proposed by Real Options Analysis allows a better quantification of the benefits of flexible 
investments [36]. 

However, most proposed real options models are not adequate for transmission expansion 
planning problems. For example, analytical models using the likes of Black-Scholes formulas 
only account for two correlated uncertainties, modelled assuming certain distributions and 

making a number of other questionable assumptions. On the other hand, lattice models 
cannot consider multiple interactions between options. Furthermore, concepts such as 
volatility or the effect of competition need to be carefully considered in real options, as the 

original settings the field of finance are inherently very different. Schachter and Mancarella 
thus concluded that rather than real options models from financial mathematics it is more 
adequate to introduce a “real options framework” or "real options thinking" to deal with 

electricity system investment decision making, which can indeed deploy methodologies such 
as multi-stage stochastic programming or LWR [37]. 

3.2.6. Measuring risk in decision making: VaR and CVaR 

The previously presented methodologies are used for making decision according to a value 
attribute (e.g., cost) in an uncertain environment. Regardless of the methodology used, 

decisions will eventually have associated a distribution of expected consequences (e.g. costs). 
The decision will lead to a different outcome in each scenario, and it may be the case that for 
a given scenario the outcome is not acceptable for the decision maker. Therefore, when 

uncertainty is involved, any such problem is intrinsically related to a decision’s risk. 
Approaches from risk management may therefore be incorporated in the decision-making 
process to avoid unacceptable decisions. 

The most common way to handle risk when making decisions is to include a risk measure. For 
example, Conejo et al. review different risk measures in their book about Decision Making 

Under Uncertainty in Electricity Markets [38], namely, variance, shortfall probability, 
expected shortage, Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR). In particular, 
our view is that VaR and CVaR may be most suitable for applications that include risk 
management in transmission expansion planning problems.  
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Given a loss function (i.e. a cost function) for an 𝛼 ∈ (0, 1) the VaR answers the question: 
“Given an investment decision, what is the highest cost I might experience with a  probability 

of 𝛼 x 100%22?” Other interpretations of VaR can be found in [39]: 

• The maximum costs that will not be exceeded with a given probability 𝛼 x 100%; 

• The 𝛼-quantile of the cost distribution; 

• The smallest cost in the (1 − 𝛼)x100% of worst cases; 

• The highest cost in the 𝛼 x100% of best cases. 

On the other hand, the CVaR, answers the question of “Given an investment decision, what 

will be the average value of costs in the (1 − 𝛼)x100% worst cases?” This risk measure is also 
known as mean excess loss or average value-at-risk [38]. Other interpretation is: 

• The average cost in the (1 − 𝛼)x100% of worst cases. 

CVaR is often the preferred risk measure to manage risk in decisions. From the previous 

interpretations of both measures, VaR informs about the cost when the worst cases start 
(worst cases are defined by the selection of 𝛼) while CVaR informs what is the average cost 
of those worst cases, providing information about their distribution. Therefore, CVaR is able 

to better recognise scenarios with low probability incurring in very high costs (which will 
substantially increase the average cost of the worst scenarios). This is an attractive attribute 
for a risk measure in transmission expansion planning problems, where these low probability 

and high cost scenarios can take place. Figure 10 illustrates in a cost distribution function the 
definitions of VaR and CVaR for an 𝛼 = 0.95: 

 
Figure 10. Example of cost distribution function showing VaR and CVaR for α=0.95 

CVaR mathematical properties are also more attractive than for VaR. For example, reference 
[40] defines certain properties that are desirable for any risk measure, namely, monotonicity, 

translation equivariance, subadditivity and positive homogeneity, so that it is possible to talk 
about coherent risk measures. VaR does not meet the subadditivity characteristic, while CVaR 
meets all criteria of a coherent risk measure. 

The previous reasons make CVaR an interesting candidate to measure and manage risk in 
transmission expansion planning problems with uncertainty. For example, it may be used as 

an ex-post analysis of the result distribution of a decision-making problem, or included in the 
problem formulation [38]. For instance, a decision-making problem may be modelled by using 
stochastic programming, whose aim is to maximize expected profits, and CVaR may then also 

                                                             
22 Also referred to as 𝛼 confidence level, with 𝛼=0.95 (95%) and 𝛼=0.99 (99%) common values used to define 
VaR and CVaR. 
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be included in the formulation of the objective function. In this case, weights between the 
expected value and CVaR are applied to represent the decision maker’s attitude towards risk. 

A more risk-averse decision maker will increase the relative weight of the  CVaR in the 
objective function, while a risk-seeking decision maker will use a higher relative weight for 
the maximization of expected profits. 
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4. A unified framework for decision making under uncertainty 

4.1. Scenario planning under uncertainty as a multiple-criteria decision-making 

problem 

In the previous section, different methodologies to model decision making under uncertainty 
have been described. While there is a significant number of applications that use these 
methodologies to solve different decision-making problems related to electrical power 

systems, there is a general lack of research that aims to systematically assess and compare 
the implications of selecting one methodology over another. For instance, [29], [30] are some 
of the few studies that compare methodologies (i.e., probabilistic assessment and LWR) and 
draw relevant conclusions, while most publications on methodology comparison do not reach 

any relevant and general conclusions (see for instance [41]). 

One of the main reasons is the absence of a unified framework that enables such 
methodology comparison. In particular, most works consider probabilistic assessment, LWR 
and min-max cost (which are the most common methodologies used in decision making) as 

different frameworks, which hinders the possibility of carrying out a systematic comparison. 

However, below we will develop an idea that these three “most common” methodologies 

(namely stochastic programming, LWR and MMC) do actually belong within a same, unified 
framework. Our framework development is supported by concepts from multi-objective 
decision making and is inspired by Starr and Zeleny’s work in [42] and follows closely the work 

of Miranda and Proenca in [29], [30]. 

It is also worth mentioning that in our analysis below we will focus on probabilistic 

assessment, LWR and MMC for a few reasons: 

- They are well-known and common methodologies for decision making; 

- As it will be clearer from our discussion below, they can be applied in a straightforward 
way to the current NOA methodology with only minimal changes in the very last stages, 
i.e., when investment decisions need to be made based on strategy cost/regret tables; 

- Although robust programming and min-max cost are formally and theoretically different, 
in practice if they were applied to the current NOA methodology they would coincide 23;  

- Min-min cost has not been included since it does not seem to be a suitable decision-

making tool to plan critical infrastructure due to its intrinsic risk-seeking nature;  
- Real options modelling and similar approaches are primarily concerned with investment 

flexibility and they might require more substantial changes to the current NOA 

methodology: this is ongoing work that we are performing and the results will be 
reported at a later stage of the project; 

- Likewise, use of risk measures such as VaR and CVaR is also part of ongoing work. 

The first step to build this unified framework is to realise that non-trivial decision making 
takes place when facing multiple attributes or objectives that may be in conflict with each 

                                                             
23 As previously mentioned, robust programming’s main attribute is in fact to optimize by ensuring feasibility in 
all scenarios (including, and in particular, the worst-case one). However, when used in the NOA process, all 
available investment options have already been screened for (technical) feasibility. Hence, the decision 
proposed by robust programming would effectively be driven by the highest-cost solutions as in MMC, thus the 
equivalency between the two methodologies in this specific case. 
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other. As presented in [42], when facing a decision typically the decision maker has a view on 
the relative importance of each of the objectives. Therefore, each objective or attribute can 

be assigned a weight, and be referred as weighted criterion. In a decision-making problem 
with a set 𝑋 of 𝑛 =  1, . . . , 𝑁  weighted criteria, each objective or attribute 𝑥𝑗 has an assigned 

weight 𝜆𝑗: 

𝑋 = (𝜆1 𝑥1, … . , 𝜆𝑗 𝑥𝑗,… , 𝜆𝑁𝑥𝑁) (1) 

The analogy with a planning-under-uncertainty problem across multiple scenarios 

characterised by an attribute 𝑥𝑗 (for example cost or regret) and probability weight 𝜆𝑗 in the 

scenario j, which we will explore further below, should have by now become evident. 

For each of the weighted criteria (or weighted scenario, in our case), there is at least one 
value preferred to all the remaining ones. A solution that has the preferred value for all the 

weighted criteria is referred to as the Ideal Solution. The Ideal Solution is intrinsically a 
virtually infeasible solution in any non-trivial problem, firstly introduced as a technical 
artefact in decision-making problems in [43]. If it was feasible, the problem would be trivial 

and ideal solution would be the obvious choice for the decision maker and there would be no 
decision-making problem. 

Evolving from the concept of Ideal Solution, Zeleny defined compromise solutions as the set 
of feasible solutions to a decision-making problem which are closest to the ideal one. These 
compromise solutions cannot be improved in any objective without losing in another 

objective. Intuitively, this is the set of solutions that the decision maker shall explore to select 
the final decision (best compromise solution). This set is also referred to as Pareto-Optimal 
and a more detailed analysis regarding their role in planning problems can be found in [44]. 

4.1.1. Multi-criteria decisions as a distance minimization problem 

Using the previous concepts, it is intuitive that a multi-criteria decision-making problem’s 

objective will be looking for which of these feasible compromise solutions are closest to the 
ideal solution. A more formal definition of that intuitive decision-making objective is to 
minimize the distance from the ideal solution. Therefore, the formulation of the decision 

making becomes a distance minimization problem. 

In Figure 11, we depict a simple example to illustrate the concepts discussed above. The figure 

represents a decision-making problem considering two weighted criteria (𝑥1𝜆1 and 𝑥2𝜆2). In 
the problem presented, both weighted criteria can only take positive values, and the best 
possible, desired value for both is zero (the similarities between this generic problem and a 

cost minimization problem can again already be perceived and will be further discussed). 
However, such an ideal solution, as aforementioned, is generally not feasible, and the set of 
feasible solutions for the problem is explicitly shown in the figure. The figure also illustrates 

the “intuitive” distance between a feasible solution and the ideal in a two-dimensional space, 
referred to by using 𝐿(𝑦𝑖), where index 𝑖 ∈ {1, . . . , 𝐾} denotes the 𝑖-th element in the feasible 
solution set. The distance between the feasible solution 𝑦3 and the ideal solution is taken 
here as example.  
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Figure 11. Multi-Criteria Decision Making as a Distance Minimization Problem 

Finding the minimum distance in a two-dimensional space, as shown in Figure 11,would seem 
intuitive and straightforward. However, most decision-making problems are characterised by 
a set of weighted criteria typically larger than two. The problem is therefore to “measure the 

distance” of K candidate solutions to the ideal solution in an N-dimensional space and select 
the closest among them. Measuring distances in N dimensions is now less straightforward, 
and a suitable metric needs to be considered. 

To formulate the problem in the most general way, we use the general Minkowski metric 
formulation to “measure distance” in an N-dimensional vector space, where 𝑦𝑖𝑗 now refers 

to the value of the feasible solution 𝑖 in the weighted criteria 𝑗 defined by 𝑥𝑖𝑗𝜆𝑗: 

   𝐿𝑝(𝑦𝑖) = √∑(|𝑦𝑖𝑗|)
𝑝

𝑁

𝑗

𝑝

𝑝 ∈ {1, … , ∞} (2) 

where 𝐿 refers to metric function, 𝑝 is a parameter defining the metric, 𝑖 is the index referring 
to a specific candidate solution and 𝑗 is the index referring to the criteria (space dimensions). 

Using the general Minkowski metric formulation (2) thus allows us to formally define the 
objective function of a multi-criteria decision-making problem in a generic way, where 𝑦𝑖𝑗 

represents the candidate solution 𝑖 for the criterion 𝑗 with its associated weight 𝜆𝑗 and the 

distance of a candidate solution to the ideal solution is to be minimized in N dimensions: 

min
𝑖

𝐿𝑝(𝑦𝑖𝑗) (3) 

Once this general formulation has been presented, the following subsections will discuss the 
use of different specific metrics obtained when varying p from 1 to infinite.  

4.1.2. Manhattan Metric  

The Manhattan Metric measures the distance between two points by summing the length of 
all paths connecting those two points using only vertical and horizontal segments. Based on 
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the example shown in Figure 11, the distance between the Ideal Solution and the feasible 
solution 3 using the Manhattan Metric is represented in Figure 12. 

 
Figure 12. Example of Manhattan Metric to Measure the distance of Alternative 3  

The previous definition of the Manhattan Metric corresponds to the General Minkowski 
formulation when 𝑝 = 1. Therefore, the distance of a feasible solution 𝑖 to the ideal is defined 

with the following expression and then applied to the example given for Solution 3. 

𝐿1(𝑦𝑖) = ∑|𝑦𝑖𝑗|

𝑁

𝑗

 (4) 

𝐿1(𝑦3) =  𝑦31 + 𝑦32 =  𝑥31𝜆1 + 𝑥32𝜆2 24 (5) 

  

                                                             
24 The symbol of absolute value is not included since the weighted criteria have been previously defined as 
positive. This is also the practical cases that we discuss here which always refer to positive costs and regrets. 
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4.1.3. Euclidean Metric 

The Euclidean Metric is the “traditional” geometric distance between two points, as can be 

seen in Figure 13. In the Minkowski formulation the Euclidean Metric corresponds to 𝑝 = 2, 
and the following general expression and its exemplificative application to Solution 3 are 
shown below. 

𝐿2(𝑦𝑖) = √∑(𝑦𝑖𝑗)
2

𝑁

𝑗

2

 (6) 

𝐿2(𝑦3) = √(𝑦31)2 + (𝑦32)22
= √(𝑥31𝜆1)2 + (𝑥32𝜆2)22

 (7) 

 

 
Figure 13 . Example of Euclidean Metric to Measure the distance of Alternative 3  

This metric may somehow be considered as a “halfway” approach between the Manhattan 

Metric and the Chebyshev metric. The latter is explained in the following paragraph. 
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4.1.4. Chebyshev Metric 

The Chebyshev Metric defines the distance between two points as the greatest of their 

differences along any of the dimensions. This metric corresponds to the formulation of the 
Minkowski metric when 𝑝 = ∞. Its general formulation is: 

𝐿∞(𝑦𝑖) = max(|𝑦𝑖𝑗|) 𝑗 = 1, … , 𝑁  (8) 

When applying this metric to measure the distance of Solution 3 to the ideal, 𝐿∞ is equal to 

𝑥31𝜆1, which is the largest value across both dimensions, as Figure 14 shows. 

𝐿∞(𝑦3) = max(𝑦31, 𝑦32) =  max(𝑥31𝜆1, 𝑥32𝜆2) =  𝑥31𝜆1 (9) 

 

 
Figure 14 Example of Chebyshev Metric to Measure the distance of Alternative 3  
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4.2. Implications of using a unified framework for decision making under uncertainty 

In the previous section we presented a framework to turn a multi-criteria decision-making 
problem into a distance minimization problem, also introducing the concepts of weighted 
criteria, ideal solution and compromise solutions. The objective was to find the feasible 

solution that is closest to the ideal (generally not feasible) solution for the decision maker. It 
was shown that there are different metrics available to measure a distance when dealing with 
a N-dimensional space. 

As already anticipated earlier, these concepts intuitively resemble the concepts used in 

decision making under uncertainty, when uncertainty is modelled through scenarios. In fact, 
as demonstrated below, these problems are fully equivalent. Table 4 summarizes the details 
of such equivalency using the terminology of electrical power systems planning problems.  

Table 4 Comparison of Multi-Criteria Decision Making and Scenario-Based Decision Making Under Uncertainty 

Concept 
Multi-Criteria Decision 
Making 

Scenario-based Decision Making Under 
Uncertainty 

𝑥𝑖𝑗𝜆𝑗 Weighted Criterion Probability-Weighted Scenario 

Ideal Solution Best value in all criteria Best value in all scenarios 

Objective function Minimize distance to ideal 
Minimize distance to ideal = Minimize 
value attribute (e.g., cost, regret) 

𝐿1(𝑦𝑖) = ∑ |𝑦
𝑖𝑗

|𝑁
𝑗   Manhattan Metric Probabilistic Assessment 

𝐿2(𝑦𝑖) = √∑ (𝑦
𝑖𝑗

)
2

𝑁
𝑗

2

  Euclidean Distance Euclidean Distance 

𝐿∞(𝑦𝑖) = 𝑚𝑎𝑥(|𝑦𝑖𝑗|) 𝑗 = 1, …, 𝑁 Chebyshev Metric Min-max cost and LWR 

In a decision-making under uncertainty problem in power systems, where a value attribute 

such as cost or regret is minimized, the ideal solution will have a value equal to zero (e.g., zero 
costs or regrets) for all the weighted scenarios. However, different constraints make this ideal 
solution infeasible, and investment strategies that involve some costs and regrets must be 

pursued. Therefore, the objective is to find the investment strategy that satisfies such 
constraints minimizing the selected attribute. This is equivalent to finding the solution 
“closest” to the ideal. Different metrics have been introduced in order to find the closest 

solution in N-criteria problems.  

Table 4 clearly demonstrates that as anticipated at the beginning of the section the most 

common methodologies used for planning under uncertainty through scenario analysis 
belong to the same framework as multi-criteria decision making based on distance 
minimization, where the aim is to find the solution closest to the ideal. It is thus possible to 

conclude that probabilistic assessment, min-max cost and LWR are not different approaches, 
but simply different metrics with the same purpose (distance minimization) to solve a 
geometric problem. Therefore, if these apparently different approaches are just different 
metrics to solve the same problem within the same unified framework, they can be 

systematically compared to discuss their suitability in terms of what is the most suitable 
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metric to address the specific planning problem under consideration and, as mentioned 
earlier, with minimal changes having in mind the current NOA methodology. 

The following section will address the implications of considering probabilistic assessment, 

LWR and min-max cost as different metrics in a unified framework. Since both min-max cost 

and LWR are applications of the Chebyshev metric only applied to different attributes, in the 

following discussion we will focus on LWR, as it is currently implemented in the NOA. 

4.2.1. Implications of (not) assigning probabilities to scenarios 

The NOA’s Methodology Review Report [31] mentions several times the advantage of LWR, 
min-max cost and min-min cost in avoiding the use of “potentially miss-specified” 

probabilities, as opposed to probabilistic assessment and more in general stochastic 
programming approaches that require scenario probabili ty weights. In fact, in stochastic 
programming the weights or probabilities assigned to each scenario must be explicitly stated, 

as the strategy selection is based on a probabilistic approach (for example, select the strategy 
that performs best when averaging scenario-specific costs or regrets by their relevant 
probability weights). This has led to a preference of approaches that avoid the explicit 
assignment of probabilities, like LWR, over probabilistic assessment, especially when 

assigning such probabilities may be considered controversial. 

In the previous section, when defining our proposed unified framework, weights were 
embedded in the definition of scenarios and, accordingly, the Chebyshev metric was 
formulated with weights too. Now, in the LWR formulation there is no weight (at least 

explicitly), and as such it is considered a “weight-agnostic” approach, as discussed. However, 
not including weights does not mean that these are not implicit in the formulation and, in 
fact, we argue that when no weights are assigned LWR (and in general any min-max approach) 
is implicitly considering all scenarios equiprobable.  

To demonstrate this, take the simple following example where the Chebyshev distance metric 

minimization problem is presented as an equivalent weighted version of LWR. The indexing 
is coherent with what previously presented. 

min𝑖 max𝑗 (𝜆𝑗regret𝑖𝑗) (10) 

If the general formulation is specified for a case of equiprobable scenarios with a probability 

(𝜆), that is: 

𝜆𝑗 = 𝜆 =
1

𝑁
∀ 𝑗 (11) 

Then the common weight or probability associated to all scenarios becomes a common factor 
that can be brought outside the minimization function, where effectively “the decisions are 
made”, yielding: 

min𝑖 max𝑗 (𝜆 regret𝑖𝑗 ) =  𝜆 ∙  min𝑖 max𝑗 ( regret𝑖𝑗 ) (12) 

This simple example thus proves that a LWR weighted formulation including equiprobable 
scenarios is equivalent to a LWR formulation not considering probabilities. In this sense, 
based on the unified framework presented, there are a few key considerations that can be 

made, with relevant implications on the suitability of different approaches: 
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• A Least Worst Weighted Regret (LWWR) approach can be proposed as the generalised 
version of LWR with scenario weights corresponding to the Chebyshev metric applied to 
the generic unified framework for multi-criteria weighted assessment.    

• Comparing a probabilistic assessment approach using different weights or probabilities 
for the scenarios and a LWR approach with no weights (which we demonstrated 
corresponds to having implicit equiprobable scenarios) become inconsistent, as the 
problems that are being solved are now different.  

• For consistency, the decision maker would need to include weights in the approaches 
based on the Chebyshev metric too (LWR, MMC), since, when using scenarios, 
probabilities are implicitly involved in all methodologies. This would lead to adopting 

LWWR and min-max weighted cost (MMWC) approaches for generalised scenario-based 
planning under uncertainty. Weighted scenarios for such approaches are for example 
discussed in [29], [30], [32], [45], [46] . 

• Different methodologies can now be consistently and seamlessly compared by assigning 

relevant probability weights, and the implications of adopting one approach/metric or 
another clearly assessed.  

4.2.2. Expected costs and expected regrets provide the same results 

When comparing probabilistic assessment with LWR, there are two distinct differences which 
can be highlighted. On the one hand, they are using a different metric to calculate the 

distance to the ideal solution, as previously explained (Manhattan and Chebyshev, 
respectively). On the other hand, they are using different indicators, namely, probabilistic 
assessment and more in general stochastic programming (typically) techniques use costs, 

while LWR uses regrets. However, within the considered unified framework where scenario 
probability weights are applied to all indicators, it is possible to show that the different 
behaviour of the two approaches clearly comes from using different metric formulations 
rather than different indicators. In fact, a stochastic programming approach (looking at 

scenario-weighted expected values) would yield the same optimal solution when applied to 
cost and regret. In other words, expected costs and expected regrets will provide the same 
results. 

To demonstrate this, let us consider that for a given scenario 𝑗 the regret felt by a decision 

maker’s choice over a strategy 𝑖 can be defined as the difference in cost between that strategy 

(𝑐𝑖𝑗 ) and the optimal strategy for that scenario (𝑐𝑗

𝑜𝑝𝑡
). Using this definition of weighted regrets 

in a stochastic formulation that minimizes the expected regrets can be written as:  

min𝑖 ∑ 𝜆𝑗 (𝑐𝑖𝑗 −  𝑐𝑗

𝑜𝑝𝑡
 )

𝑗

 (13) 

By rearranging the terms in the previous expression, we get: 

min𝑖 (∑ 𝜆𝑗 𝑐𝑖𝑗 −   ∑ 𝜆𝑗𝑐𝑗

𝑜𝑝𝑡

𝑗

 

𝑗

) (14) 

Since 𝑐𝑗
𝑜𝑝𝑡

, the best strategy for each scenario, is indeed a constant for each scenario, it can 

be taken out of the minimization function.  
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Therefore, the new minimization problem can be written as: 

min𝑖 (∑ 𝜆𝑗 𝑐𝑖𝑗   

𝑗

) −  ∑ 𝜆𝑗𝑐𝑗

𝑜𝑝𝑡

𝑗

 (15) 

which correspond to minimising the expected costs.  

As also discussed in [29], the previous expressions demonstrate that using (weighted) regrets 
and costs in a probabilistic assessment context provides the same solution. This also confirms 
the suitability and consistency of the proposed framework where probability weights are now 

naturally part of scenario-based planning. 

4.2.3. Implications in finding compromise solutions 

As previously presented, compromise solutions are formally defined as feasible strategies 
which cannot be improved in one scenario without losing somewhere else. As there is no 
feasible solution that does best in all scenarios (it would be the ideal solution) , compromise 

solutions compose the natural set of candidates to consider for the final decision . These are 
also called the non-dominated set of solutions, or Pareto Optimal [42]. Effectively, in the 
NOA’s context these are all the options or strategies that would have been pre-screened in 
the technical analysis, before the permutations are assessed. 

Compromise solutions are close to the ideal and show relatively good performance in all 

scenarios, which is of course of great interest for decision makers. Therefore, the ability of 
each methodology/metric in “exploring” the feasible set and selecting one of the compromise 
solutions is critical. 

As discussed in [29], [30], when a decision-making problem involves integer variables very 
likely we will have a non-convex set of compromise solutions. Furthermore, methodologies 

such as probabilistic assessment which are based on linear compositions across different 
scenarios are only able to explore the convex hull of the whole set of possible solutions, 
potentially missing some of those compromise solutions in the non-convex space which might 

potentially lead to overall “better” decisions. In contrast, non-linear approaches such as the 
Chebyshev metric are in principle able to “invade” the non-convex space of the compromise 
solution set. This feature may be of particular interest in the TEP problem in which investment 

variables are intrinsically discrete. Figure 15 shows a simple example which depicts 
compromise solutions, and how LWR can better explore the space of compromise solutions.  
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Figure 15 Example of Compromise Solutions and Probabilistic Assessment/Stochastic Programming and LWR’s ability to 

explore non-convex solutions from this set 

4.2.4. Performance of indicators and metrics with spurious investment options  

There is concern that some decision-making approaches (and LWR in particular) might be less 
robust against quantitative errors in the reinforcement options, introduction of unsuitable 
reinforcement options, etc. These investment options are sometimes referred to as spurious. 

From the definition of the Chebyshev metric, it is evident that when using the regret indicator 
adding a new reinforcement strategy may change the relative solution ranking, thus 

producing a new, different optimal decision. This is exemplified in the numerical case 
presented below (it assumes equal probabilities for the scenarios). 

 
Figure 16. Numerical example to exemplify the effect of adding new strategies for different indicators and metrics. 

As it can be seen in the example, the addition of strategy C modifies the optimal decision 

when using regret as the indicator and Chebyshev (or Euclidean) as the metric. In fact, when 
considering only strategies A and B (see table b in Figure 16), strategy A is selected. Then, if 
strategy C is added, the optimal decision switches to B. Hence, if strategy C were to be a 
spurious one, then the decision might have lost robustness.  

In the context of the NOA, however, it should be highlighted that only actual engineering 

feasible and technically viable solutions are proposed as candidate strategies; hence, in 
principle no project should be labelled as spurious as such25. In this sense, the example 

                                                             
25  In other words, while the concept of “spurious solution” may have its mathematical relevance, from an 
engineering perspective and in this specific context it may be less appropriate, given that each and every solution 
proposed into the NOA would have first been checked for technical feasibility. 
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presented in Figure 16 should effectively be considered as two different planning exercises: 
in the first one (tables a and b) there are only two candidate options and in the second one 

(tables c and d) a new valid/feasible strategy has become available and it has to be considered 
in the context of the assessment. The moment that a new strategy is available, the regrets 
effectively change, because the decision maker is aware of a new option to face the uncertain 

future and they will be conscious of the potential regret associated to using strategy A or B in 
the presence of strategy C. 

If there were concerns regarding the quality of some of the options included in the different 
strategies that are being assessed, for example because of various errors, it may not be the 
role of the decision-making metric/indicator to “isolate” the spurious solutions: the 

spuriousness of the different reinforcement options is something that would need to be 
assessed before starting the assessment process and based on specific considerations. 
Furthermore, if, notwithstanding the technical feasibility of a solution, for different reasons 

there were still doubts about its relevance, sensitivity analyses should be run, for example, 
assessing how the strategy ranking changes with and without consideration of this solution 
“suspected” to be spurious. The tools illustrated below may also support such analyses.   
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4.3. Il lustrative case study application 

4.3.1. Case study description  

In order to illustrate some of the concepts presented in the previous sections and to expand 
further on the NOA’s potential applications and implications of the proposed unified decision 

making framework and relevant weighted decision metrics, we consider here as illustrative 
example a simple TEP problem, namely, the 3-bus system (B1, B2, B3) whose topology and 
parameters26 (in per unit, 1pu = 100MW) are presented in Figure 17. 

 
Figure 17. 3-bus system and parameters of generators and lines. 

The model to calculate the optimal investment simplistically considers the operation of one 
day only. The uncertain variable is the demand in each node (D1 in B1, D2 in B2 and D3 in B3), 

whose hourly time series for three scenarios (high, medium and low demand) are depicted in 
Figure 18.  

 

Figure 18. Hourly values of load for each demand in each of the three scenarios under consideration 

For simplicity and given the illustrative nature of the example, the power flows in the 
transmission lines are not subject to Kirchhoff voltage law (transport model only). There are 

six investment strategies that we consider, as presented in Table 5. The investment cost INVC 
is the same for all the options (that is, 100% expansion costs INVC for each line and 50% 
expansion costs INVC/2 again for each line); the value for INVC was chosen aiming to create 

interesting numerical outcomes, resulting in a value of $1385 per line per day. The ID for each 
strategy is relevant to interpreting the results in Figure 19 since the colours are normalised to 
identify each strategy. Table 5 also shows the results for the deterministic assessment of 

costs27 for each strategy for each scenario, highlighting in bold the least cost strategies for 
each scenario. 

                                                             
26 The value of lost load is conventionally set to $300/MWh. 
27 The model corresponds to a l inear problem minimising the costs of operation with nodal balances and 
generation and transmission limits for 24 time periods of 1 hour. 
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Table 6 presents the results for the regrets calculated based on the results presented in Table 
5. It also shows the maximum regrets for each strategy and the LWR for the unweighted case 

is highlighted in bold.  

Table 5. Investment strategies, investment costs and deterministic results 

Strategy 
ID 

Action 
Investment Cost  
[$/Line/day] 

Cost by scenario [$] 

High Medium Low 

0 Not to expand 0 610602.54 426307.07 247709.93 

1 Expand Line 1 in 100% INVC 611987.72 426089.73 246452.39 

2 Expand Line 2 in 100% INVC 604949.16 424769.84 249082.63 

3 Expand Line 3 in 100% INVC 604949.16 426752.31 246882.11 

4 Expand Line 1 in 50% INVC/2 611295.13 425793.43 246804.09 

5 Expand Line 2 in 50% INVC/2 606601.92 424473.54 248390.04 

6 Expand Line 3 in 50% INVC/2 606601.92 426059.72 246846.25 

 
Table 6. Regrets calculated based on deterministic results 

Strategy 

ID 
Action 

Regrets [$] 
Max Regret [$] 

High Medium Low 

0 Not to expand 5653.39 1833.53 1257.54 5653.39 

1 Expand Line 1 in 100% 7038.56 1616.2 0 7038.56 

2 Expand Line 2 in 100% 0 296.31 2630.23 2630.23 

3 Expand Line 3 in 100% 0 2278.77 429.71 2278.77 

4 Expand Line 1 in 50% 6345.97 1319.89 351.69 6345.97 

5 Expand Line 2 in 50% 1652.76 0 1937.65 1937.65 

6 Expand Line 3 in 50% 1652.76 1586.19 393.85 1652.76 

4.3.2. Decision making under different metrics and decision-stability regions 

The next step involves using the previous results to determine the optimal strategy based on 

the weighted metrics presented in earlier sections of this document. In particular, in this case 
study we analyse the effect of using the following metrics:  

• Manhattan metric (probabilistic assessment/stochastic programming): 𝐿1 (𝑦𝑖) =
∑ |𝑦𝑖𝑗|𝑁

𝑗  

• Euclidean distance: 𝐿2(𝑦𝑖) = √∑ (𝑦𝑖𝑗)
2𝑁

𝑗

2
 

• Chebyshev metric (LWWR): 𝐿∞(𝑦𝑖) = 𝑚𝑎𝑥(|𝑦𝑖𝑗|) 𝑗 = 1, … , 𝑁  

Using the numerical results presented before it is possible to build these metrics for different 
weights 𝜆𝑗 for the scenarios. The resulting heatmaps presented in Figure 19 use the y-axis to 

represent the weight of scenario LOW (𝜆𝐿) and the x-axis for the weight of scenario HIGH 
(𝜆𝐻); considering that there are only three scenarios, the weight of scenario MEDIUM (𝜆𝑀) is 
implicit in each chart by considering that 𝜆𝑀 = 1 − (𝜆𝐿 + 𝜆𝐻) . By analyzing a range of 
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weights, it is possible to determine the strategy that the different approaches would select 
for each weight combination, which then can be plotted by means of the associated ID. This 

graphical approach also results in a clear visualisation of the scenario weight ranges for which 
same decisions are recommended by different methodologies.  

 

Figure 19. Optimal strategies for weighted scenarios and different metrics 

As can be seen in Figure 19a, the probabilistic approach identifies only five out of six 

investment strategies; furthermore, the resulting areas are convex (the line formed by any 
two points in the area is contained in the area itself) and the transition from a strategy to 
another across scenario weights is smooth. As soon as a non-linear metric is used, strategy 4 
appears too in the optimal solution set, as can be seen for the Euclidean distance ( Figure 19b) 

and LWWR (Figure 19c). These findings are all in line with the theoretical considerati ons 
discussed above. 

There is a further relevant consideration that can be derived from Figure 19: by superposing 
the charts for the probabilistic approach (Figure 19a) and the one associated to LWWR (Figure 

19c) it is possible to find what we could define as decision-stability regions, namely those 
regions characterised by a combination of weights within which the selection of the optimal 
strategy would be the same regardless of the metric used to calculate it. 
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As each decision-stability region is defined for a range of weights for each scenario, this allows 
us to potentially select a strategy from the stable regions which is independent of the metric 

used and can also cope with “uncertainty” in the determination of the probability of each 
scenario. For example, if the LOW and HIGH scenarios were to be considered low probability 
scenarios (~10% each), the strategy selected would be number 5 regardless of the metric 

used; this would be true even if the scenario HIGH would change its weight between 0 and 
15%, scenario LOW in the 0 to 35% range and the scenario MEDIUM between 50 and 100%.  
Decision-stability regions can thus be a powerful tool to test the robustness of given solutions 
to uncertain scenario probability assignment or to the plausibility of given scenarios.  

Another interesting aspect worth highlighting from the results presented in Figure 19 is that 

there exists a relationship between the location of the reinforcement and the geometry of 
the areas. In fact, strategies 1 and 4 correspond to the expansion of line 1, strategies 2 and 5 
to line 2, and strategies 3 and 6 to line 3. It can be seen that lines 2 and 3 dominate the 

resulting strategies for all the metrics, and that the total corresponding area falls within clear 
triangular sections of the heatmaps (a), (b) and (c) in Figure 19. This hints that important 
physical insights could be gained by deploying such a tool.  

It is also interesting to point out that, as discussed above, the “classical” ( apparently 
“unweighted”) LWR approach would correspond to an equal weight combination for the 

three scenarios, and such LWR (that is, a LWWR with equal probability weights) could be 
compared with the results from probabilistic assessment with the same 33.3%-33.3%-33.3% 
combination of weights. It is clear from visual inspection that in this specific case study the 

classical approach does not yield decision-stable solutions across different metrics, hinting 
that further analysis may be worthwhile. This is discussed further below.  

It is important to highlight that for applications with more than three scenarios, for example 
the four scenarios considered in the NOA process, the same graphical representation could 
still be obtained by varying the probability weights of two scenarios, for example the ones 

that are expected to perform “worst” and “best”, and by assuming that the other two (more 
“central”) scenarios are equally probable. Also, a four-scenario case can be represented 
through a 3D heatmap with specific values assigned on each scenario probability. 

4.3.3. Cost and regret analysis of the solutions from different metrics 

Figure 20 illustrates the distribution of expected costs (a)-(b) and maximum regrets (c)-(d) 

within each of the areas for the selected strategies using the probabilistic and LWWR 
approaches. To understand how the regrets push the boundaries of the areas to become what 
they are in Figure 19c, Figure 20 shows that the optimal areas found by the LWWR metric 

naturally reduce the maximum regrets that can be experienced compared to the probabilistic 
case in Figure 20c. In fact, the probabilistic metric is applied to minimize the weighted average 
costs across scenarios, hence resulting in strategy spaces that have been optimised without 
considering the corresponding regrets. The differences in regrets between the probabilistic 

and LWR metrics can be seen in Figure 21a; the values presented there are the results of 
subtracting the values Figure 20d from the values Figure 20c. Furthermore, Figure 21b shows 
the differences resulting from subtracting the expected costs presented in Figure 20a from 

Figure 20b. It is clear from the positive differences seen within the LWWR decision boundaries 
in Figure 21b that they would change to match the probabilistic decision boundaries if the 
probabilistic metric was used to make the decisions. 
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In general, by performing this kind of expected costs and expected regrets analysis for 
different methodologies all the implications of using different approaches, risk -aversion 

degrees, and scenario weights may be clearly assessed, potentially leading to developing an 
enhanced decision-making framework where the performance of the proposed investment 
solutions are much more transparent in terms of including costs and risks and rob ust to 

different uncertainties. 

 

Figure 20. Expected cost and maximum weighted regret for the optimal decisions in the Probabilistic and LWWR cases 
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Figure 21. Differences between Probabilistic and LWWR solutions for maximum regrets and expected costs 
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5. General feedback on the NOA process and initial recommendations 
for improvement 

5.1. General feedback  

Based on the reviews and study performed, there are few key points that it is possible to 
highlight as feedback for the current NOA process and considerations for a more probabilistic 

approach: 

• Planning under uncertainty is typically dealt with by scenario-based approaches in most 
countries. National Grid ESO’s approach seems therefore in line with what is done 
elsewhere. 

• Most countries adopt a (very) limited number of scenarios or sensitivities around central 
scenarios in their planning methodologies, with no probability weights explicitly 

associated with the considered scenarios. In fact, scenarios seem to be typically analysed 
independently and then planning options are chosen based on specific rules to make an 
overall decision. National Grid ESO’s NOA methodology based on LWR that integrates 

decisions across several scenarios thus seems to represent the state of the art of planning 
under uncertainty.  

• Based on our proposed unified view that brings together apparently different decision-
making approaches, the current LWR approach does already have (implicit equal) 

probability weights and is therefore not probability-agnostic. The current NOA 
methodology could also readily and seamlessly be adapted to incorporate scenario 
probability weights, by adopting a more general Least Worst Weighted Regret (LWWR) 

approach. 

• Comparing a probabilistic assessment approach, which aims to minimise expected costs 
(or, equivalently, expected regrets) across scenarios using specific weights or 
probabilities, and a LWR approach with no weights (that is, with implicitly equiprobable 

scenarios) may be inconsistent, as the problems that they would be solving would be 
effectively different.  

• LWR and its weighted counterpart, LWWR, allow exploring more investment solutions 
than a probabilistic assessment, which is naturally more appealing.  

• In comparison with a probabilistic assessment, LWR (or the more general LWWR) is 
intrinsically “less risky”, as it explicitly adopts a risk measure (the regrets themselves) and 
minimises it. Effectively this means that LWWR tends to opt for investments that perform 
satisfactorily in all scenarios, reducing the potential economic impacts that an 

unfavourable scenario might generate once the decision has been made. Conversely, a 
probabilistic assessment, which does not take into account any risk measure (and is 
indeed risk-neutral), could lead to greater economic impacts if unfavourable scenarios 

were to take place.  

• As an interesting feature in practical applications, including potentially in the NOA, by a 
suitable use of scenario probability weights LWWR effectively allows modul ation of the 
decision maker’s attitude to risk aversion. In fact, assigning relatively smaller weights to 

extreme scenarios that might tend to drive investment would correspond, in practical 
terms, to decreasing the risk-aversion level.   

• Therefore, from a point of view of a decision maker that is risk-averse, due to their 
intrinsic approach to risk LWR and, if using probabilistic weights, LWWR may be 
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considered more adequate for investment analyses such as in the NOA. Furthermore, as 
aforementioned, the decision maker’s risk attitude can also be potentially modulated by 

using weights in the LWWR approach. 

5.2. Initial recommendations  

In terms of possible improvements to the current NOA process and more in general aspects 

that might be worth exploring, we would like to recommend the following: 

• Additional operational snapshots could be included in the technical analysis besides the 
current winter peak assessment. This is in light of increasing operational complexity and 

uncertainty that might drive worst case flows across boundaries at different times of the 
year. Similarly, inclusion of new operational characteristics and constraints, such as 
associated with low-inertia conditions, could be desirable. 

• The use of LWR or similar approaches could be adopted to inform the optimality of 
interconnector assessment across scenarios too. This would allow a more consistent and 
integrated approach between selection of (internal) boundary reinforcement and 
optimal level of interconnectors. 

• A Least Worst Weighted Regret (LWWR) approach, in which scenarios have explicitly 
assigned weights could be proposed as the generalised version of LWR (where 
equiprobable scenarios are implicitly assumed). 

• The implicit equiprobable scenario representation of the current LWR approach can be 
interpreted as a special case of the more general LWWR whereby it is intrinsically 
believed that all current scenarios are similarly plausible and likely to happen 28. However, 
if there are reasons to consider asymmetry in the likelihood of the considered scenarios, 

consideration might be given to a more detailed assessment that might explore different 
probability weights. 

• While we are aware that the selection of probability weights to assign to scenarios may 
be difficult and controversial, our proposed unified framework provides a consistent and 

comprehensive view that could seamlessly compare and assess the outcomes of 
(apparently) different methodologies (i.e., probabilistic, LWWR and min-max weighted 
cost), with scenario weights being considered as a natural component. This could 

eventually provide more transparency and robustness to the investment process and the 
selected options, thus resulting in reduced risk of spurious solutions and reduced risk of 
decisions being driven more by specific scenarios than methodologies , and in general 
enhanced hedge against potential uncertainty. Furthermore, by modulating the value of 

the scenario weights, the impact of different degrees of  risk-aversion may also be 
explored.  

• Such analysis could also be supported by visual tools that could identify decision-stability 
regions with win-win solutions from different methodologies and suggest what solutions 

might require further analysis, for example in terms of expected costs and regrets. 

• Irrespective of the formal use of probability weights, multi -parametric scenario 
sensitivity studies could be performed to provide insights into the benefits and risks of 

                                                             
28  Equiprobability of scenarios corresponds to Laplace’s “principle of insufficient reason”. This, however, 
generally requires absence of lack of symmetry in the considered scenarios. Once again, if such symmetry may 
be present due to different views on future scenarios, the use probability weights is advocated in the classical 
theory.  
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different proposed solutions under different possible future occurrences, with for 
example expected costs and expected regrets (a measure of risk) analysis for different 

methodologies able to clearly assess all the implications of using different approaches, 
risk-aversion degrees, and scenario weights.  

5.3. Next steps  

Next steps in this study include: looking into techniques to embed more flexibility in the NOA 
methodology (e.g., more explicit approaches that resemble Real Options) starting from and 
possibly improving the current use of annual rolling horizon; looking into considering the use 

of different risk measures (for example, based on utility theory and CVaR); studying in more 
detail the role and impact of extreme scenarios and alternative solutions on the proposed 
decision making approaches, possibly with real case studies; and attempting to bring closer 
technical and economic aspects of the NOA and looking for overall improvement of the 

mechanics of the whole methodology in its interaction between technical and commercial 
studies.  
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