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Executive summary

Inthisreport we addressa number of fundamental questions of interest to NGESO forits NOA
process, namely:

*  What decision-making methodologies are available and which ones are practically
adopted indifferent countries for electricity system planning underuncertainty?

*  How could different decision-making methodologies be comparedin a systematicway?
*  What is the potential role of probability weights assigned to scenarios?

* IsLWR an adequate decision-makingtool withinthe NOA scope?

*  How could the current NOA decision-making process be improved?

To address these questions, we have performed athorough literature review of technical and
academic literature and current industry practices on transmission planning worldwide, as
well as of methodologiesfor decision makingunder uncertainty.

The results of our study suggest that National Grid’s current NOA methodology is at the
forefront of the state of the art, particularly with regards to the use of a rolling-horizon Least
Worst Regret (LWR) approach which accounts for considering the impact of the suggested
investment option across multiple scenarios as well as for some degree of decision flexibility.
Furthermore, none of the surveyed system operators around the world seems to adopt
probability weights fortheirscenarios, anditis noteven clearhow integrated decisions across
multiple scenarios are made.

To assess potential implications of a “more probabilistic” analysis, in case including scenario
weights, and the use of different methodologies for planning across uncertain future, we have
developed a new framework that views the planning problem across multiple (in case
probability-weighted) scenarios as a multi-objective optimization problem. We then
demonstrate how apparently different methodologies such as probabilistic planning
(expected value analysis), min-max cost, LWR, etc., do essentially solve the same distance-
minimization problem but only using different metrics in a vector space that describes
probability-weighted attributes (e.g., costs, regrets) for several scenarios.

One of the consequences of looking at the NOA problem through the lenses of such a
framework is that the current LWR approach does already include (implicit and equal)
probability weights. In the same vein, comparing a probabilisticassessmentapproach, which
aims to minimise expected costs (or, equivalently, expected regrets, as we show) across
scenarios using specific weights, and a LWR approach with no weights (that is, with implicitly
equiprobable scenarios) might be inconsistent, as the problems that they would be solving
would effectively be different. A more consistent comparison could be carried out, as we
discuss in our proposal, by adopting a more general Least Worst Weighted Regret (LWWR)
approach, for which the current NOA methodology could readily and seamlessly be adapted
in order to incorporate scenario probability weights.

In general terms, in comparison with a probabilistic assessment, we show how LWR (or the
more general LWWR) is intrinsically “less risky” and allows exploring more investment
solutions. Therefore, irrespectively of the use of scenario weights, LWR may be considered
superior from the point of view of a decision maker that is risk-averse, and appears to be an
adequate methodology to perform transmission investment analysis in a highly uncertain
environment.



As potential NOA methodological developments, while we are aware that the selection of
probability weights to assign to scenarios may be difficultand controversial, we believe that
our proposed unified framework could at least provide a consistent and comprehensive
approach to seamlessly compare and assess the outcomes of (apparently) different
methodologies (i.e., stochastic/probabilistic,c LWWR and min-max weighted cost), with
scenario weights being considered as a natural component of the analysis. This could
introduce, with negligible changes required in the NOA process, more transparency and
robustnessto the investment analysis and the selected options, thus resultingin reduced risk
of spurious solutions and reduced risk of decisions being driven more by scenarios than by
the methodologies themselves, and in general in enhanced hedge against planning
uncertainty. As exemplified in a synthetic network case study application, such analysis could
also be supported by visual tools that could identify decision-stability regions with win-win
recommendations from different methodologies, suggest what solutions might require
further analysis, and provide a systematic way to perform sensitivities to assess costs,
benefits, risks and robustness of alternative investmentoptionsinthe presence of uncertain
scenarios.



1. Introduction

1.1. Context

With increasing renewable penetration level and electrification of different end-use sectors,
electrical networks around the world are experiencing a drasticchange of powerflows at both
distribution and transmission levels. The need for reinforcing existing networks is thus
becoming more urgent and frequent. At the same time, there is increasing uncertainty as to
what new network users will connect to the system, and whenand where. Planners are thus
required to strike a delicate balance between security and cost while facing significantlong-
term uncertainty. In the technical analysis of system planning, the planner needsto develop
sophisticated models to mimicthe operation of future powersystems which are expectedto
be characterised by lower inertia and substantial volumes of non-dispatchable renewables
and distributed energy sources. As for the economic analysis, due to the inherent nature of
investmentin large infrastructures, with large capital expenditures and long payback periods,
the planner is required to thoroughly assess all reasonable reinforcement options and
maximise consumers’ benefits while hedging the risk of stepping into different potential
futures. Solving all these challenges proves to be a daunting task, especially if the planner
wants to proceed in a consistentand traceable way.

As the operator of the Great Britain (GB)’s power system, National Grid Electricity System
Operator (NGESQ) is in charge of carrying out several studies to inform stakeholders and
provide recommendations about the development of the GB system in both the short and
long terms. Among these studies, the Network Options Assessment (NOA) aims to assess the
network reinforcement requirements across the GB system for the next 20 years, and to
produce recommendations as to what assets to build or services to procure to meet those
system requirements. The NOA involves both technical and economic evaluations that are
performed for differentscenarios. The technical analysis is currently carried out considering
a deterministic approach based on a winter snapshot of operation of the system; the
‘Electricity Ten Year Statement (ETYS)’ process then evaluates network ‘boundaries’ based on
scaled generation and demand. Based on this technical evaluation and the potential
reinforcement options put forward by the Transmission Owners, the NOA cost-benefit
analysis (CBA) thenidentifies the optimal path of network reinforcements by applying a single
year Least Worst Regret (LWR) approach that takes into account the need for asset
investment considering the multiple scenarios.

1.2. Aims and objectives

In thisreport, we aim at addressinga number of fundamental questions of interestto NGESO
forits NOA process, namely:

* What decision-making methodologies are available and which ones are practically
adopted indifferent countries for electricity system planning under uncertainty?

*  How could different decision-making methodologies be comparedin a systematicway?
*  What is the potential role of probability weights assigned to scenarios?
* |IsLWR an adequate decision-makingtool withinthe NOA scope?

*  How could the current NOA decision-making process be improved?



To address these questions, first we will perform areview of technical and academicliterature
and current industry practices on transmission planning worldwide. Additionally, we will
review the academic and industry literature on decision making under uncertainty, focusing
on different techniques (e.g., probabilistic approach, LWR, min-max cost, etc.), risk
management approaches, and practical applications in different countries. We will then
introduce a new, unified view of different methodologies for planning under uncertainty —
most noticeably probabilistic planningand LWR. The proposed framework allows a consistent
approach to decision making across several scenarios and potentially considering probability
weights for each scenario, clear analysis of expected benefits and risks from different
methodologies and scenario weights, and more transparent and robust insights into the
reinforcement options recommended.Based on both the knowledge gainedin the review and
original research inputs, we will finally provide feedback on the current methodology and
propose initial recommendations to potentially improve NGESO’s planning process to deal
with uncertainty.

1.3. Report structure

e Section 2 sets out to describe our understanding of the NOA process as an approach to
make investment decisions in transmission expansion planning, not only for the
boundaries within GB system butalso forthe interconnectors between GBand neighbour
European countries.

e Section 3 presents a literature review on decision making under uncertainty and
international best practices for transmission expansion planning (TEP), so as to compare
the NOA’sassumptions, principles, and attributes to the international experiencesinthe
subject, identify relevant differences, and explore potential theoretical and practical
improvements.

e Section 4 introduces a new view of planning across multiple (probability-weighted)
scenarios as a multi-objective optimization problem, which allows us to develop a
consistent representation of different methodologies for decision making under
uncertainty — including probabilisticapproach, min-max cost, and LWR — as a geometric
distance problem applied to different value attributes (e.g., cost, regret) for different
candidate solutions. Relevant case studies also illustrate the benefits of the proposed
approach and some powerful tools that can enhance transparency and robustness of
transmission planning under uncertainty.

e Section 5 provides overall feedback on the current NOA methodology based on the
studies performed and puts forwards initial recommendations on potential
improvements in terms of both the theoretical framework that supports the NOA process
and the mechanics of the processitself.



2. The Network Options Assessment process

This section provides a general description of the NOA process. The description is based on
official documentation published by NGESO [1], [2] and a series of interviews with different
peopleinvolvedinthe NOA process. An adequate understanding of the process, as per steps,
peopleinvolved, timing, supporting theory, working assumptions, etc. is of essence to provide
recommendations that fit both the structure of process and the resources available.

The NOA process is run on a yearly basis with the objective to provide recommendations to
the transmission operators on what projects to execute. The recommendations fall within5
different categories that are described in Section 2.3.4. As presentedin Figure 1, the NOA
process is based on a rolling horizon strategy, in which each year a set of candidate
transmission reinforcementsis proposed by the transmission owners (TOs) in the context of
scenarios describingthe system’s future (Future Energy Scenarios (FES) [3]).

The window of time used to assess the different reinforcement options varies between 20
and 60 years in different stages of the process in order to cope with the lifespan of
transmission projects (40 years) and the window to make the investment decision (20 years).

Update views

Update views on system’s
on system’s future and
Current views on future and reinforcement
thefsystem s reinforcement options
uture options

development and
reinforcement
options
Subsequent NOA
Next year's NOA
Current NOA

Overall NPV analysis to find optimal development paths
Final decisions on what to do on Year 1
Year 0 Year 1 | Y2 |---[v20]y21]v22[---|v60]| V61| V62|

Output:
Proceed or delay
projects next year (Y1)

Figure 1. Inputs, output and rolling window structure of the NOA process
The NOA processisrun by the Network Development (ND) Team within NGESO. The ND Team

interacts mainly with the TOs, both to informthem about system requirements (determined
within ETYS [4]) and to get the differentreinforcementoptionsto be consideredinthe NOA.

The following sections describe specific aspects of the process, including the timeline,
modelling aspects of the process, and technical and economic assessments.

2.1. Team structure and timeline

The Network Development Team is a group of over 20 people that performs the different
tasks associated with the technical and economicassessment of the process. The assessment
spans over several months and it isrepeated on ayearly basis.



The Technical Economic Assessment Team (TEA team) owns the NOA report and coordinates
the entire process. It acts as the layer of communication with stakeholders, in particular the
Office of Gas and Electricity Markets (Ofgem) and the TOs. Also, it helps the Economic
Assessment Team and System Capability Team with heavy processes, like the cost-benefit
analysis (CBA) and the challenge and review (C&R) process of the information provided by the
TOs. It isin charge of assessingthe pathfinding projects, which correspond to the evaluation
of novel approaches to meet system needs.

The System Capability Team (SC team) owns the ETYS report which presents the boundary
requirements and capabilities forthe GB System. Italsorunsa C&R process of the information
provided by the TOs about boundary capabilities. The general description of the SCteam tasks
is presentedinsection 2.2

The Economic Assessment Team (ECON team) owns the CBA and determinesthe investment
decisions based on LWR. The process involves modelling the future conditions of the system
and the economic impact of different transmission reinforcements under different system
scenarios. The steps involvedin CBA are describedin section 2.3.

The activities conducted by each team are interdependent and also, they are affected by
external inputsand interactions with other stakeholders, as presentedin Figure 2.

NOA
*  Committee

NOA Study Period —» +——— NOA Process —_—

-

FES
1 READY

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb
Improvement of tools

TEA Team NOA methodology ‘ CBAt | Help NOA CBA/LWR ‘
(Owns Report) |

5(+1) People

Help C&R NOA Report ‘
Path finding projects assessment |

| ETYS

(OSC Teg;-nR) | Challenge & Review |
wns

7(+2) People Improvement of tools | | Improvement

l ECON Requirements ‘ i

ECON Team Improvement of tools/process |

(Owns BID3) CBA L NOA CBA/LWR
5(+3) People \_, I

NOA IC

TOs

System
models to
SC team

Final
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Figure 2. Simplified chart presenting main and timing of the NOA related activities conducted by the ND teams

The tasks can be grouped in three categories: improvements of processes, study period
(including training for the CBA, or “CBA t”) and NOA process. The report is published during
January and before presenting the recommendations resulting from the analysis, these

undergo the scrutiny of a group of experts, the NOA committee, to check that the
recommendations are sound.
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2.2. Boundary capability assessment

This step of the process is responsibility of the system capability (SC) team. The purpose is to
determine the capability requirements of the GB system and assessthe boundary capability
provided by combinations of reinforcements.

The process starts with the development of the ETYS report, which processes the Future
Energy Scenarios and determines the requirements of the network for the next 10 years for
each scenario. The process includes running the scenarios with an unconstrained
transmission network in BID3! to determine the boundary requirements; also, the SC team
runs specific studies described in the Security and Quality of Supply Standard (SQSS) [5] for
each boundary to generate information that is made publicly available and also sent to the
TOs so that they can propose options for reinforcement.

The concepts of boundaries, boundary capability and reinforcementsinteract in the process
of determining the required transmission infrastructure in GB. Boundaries correspond to
virtual frontiers of interest; they allow to quantify the capacity of the system to transfer
poweracross it. Reinforcements, onthe otherhand, are physical assets that can be deployed
in the system?. They affect the capacity to transfer power across one or more boundaries
(also known as boundary capability). A given set of reinforcements can unlock additional
boundary capability when they are deployed in the system. The interaction between
reinforcements and boundaries is depicted in Figure 3. In this example, there are three
reinforcement options (D, E, F) and three boundaries (B1, B2, B3); each combination of
reinforcements may impact the boundary capability (BC) of the boundaries under
consideration (for example, BCer_g3, corresponds to the boundary capability of boundary B3
whenthe set of reinforcements “EF” isin place). Some reinforcement combinations may not
be possible because of rules governing their interactions (for instance, rule “F must follow E”
makes reinforcementsets “F” and “DF” infeasible). The information that the TOs are required
to provide and the SC team is required to review is similarto the table shown within Figure 3:
for various combinations of reinforcements (not all of them, as the set of combinations grows
exponentially with the total number of reinforcements) various boundaries are analysed to
determine the resulting boundary capabilities that are unlocked. This process is conducted
for selectedyears.

1 BID3 is a proprietary power market dispatch tool devel oped by AFRY.
2 NGESO can propose no-buildor reduced build options that can also bring networkbenefit.
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Figure 3. Boundaries, reinforcements and boundary capabilities

With the aim of including a probabilisticassessment of the boundary capabilities,the SC team
has also developed atool based on direct current (DC) load flow and Monte Carlo analysisto
calculate the resulting distribution of boundary flows for input distributions of loading and
generation conditions of the whole system, which is used at the stage to provide information
of boundary requirements yearround.

Considering the reinforcement options that the TOs propose in response to the requirements
reportedinthe ETYS, the SC team runs studies described in the SQSS to confirm the capability
reported for each combination of options under consideration. The information produced by
the SCteamis used fora process of C&R of the capabilities thatthe TOs inform foreach option
and combinations of options based on the boundary studies they perform annually; the
information provided by the TOs and reviewed by the SC team is then used to run the NOA
CBA. The base network models and study guidelines are annually agreed among all parties
involvedinthe assessment.

The main elementsinthe SC team tasks are presentedin Figure 4.

National Grid ESO

FES scenarios TOs reinforcements

- Gens options
- Demand
National Grid ESO & TOs
National Grid ESO Boundary Analysis

ETYS process Uses at least 1 FES scenario
- Winter peak snap(shcl:tdalnalysis to Based on winter peak snapshot
run SQSS Economy (solid line, SQSS L .
Appendix E) and Security (dashed Planned Analysis is run in DIGSILENT power factory

line, SQSS Appendix C) analysis. transfers | - Steady state analysis

- BID3 is run with unconstrained line _ « Thermal compliance
limits to determine market-based Voltage compliance
flow requirements (shaded areas) Required

Voltage collapse

‘ transfers | _ N-1/ N-1-1 (only cables or transformers)
/ N-D (double circuit)

- Contingency analysis considers events in
the proximity of the boundary

]

Boundary capabilities
& options increments
for C&R process

Boundary Transfers (MW)

Figure 4. System Capability team process
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It is important to highlight some of the aspects of the procedure to calculate the boundary
capabilitiesfor the C&R process. The SC team in principle uses only one scenario of the FES,
whichis selected onthe grounds of the level of stress the scenarioimposes to the boundaries
so they can find robust capability limits (the scenario isselectedin agreement with the TOs).
The target is to find the scenario which, on average across all boundaries, stresses the
network the most. In the last three years the selected scenario has been the one labelled as
two degrees (TD), which drives very high north to south power flows due to all the northern
wind generation observed in Scotland. In the current NOA process, the community
renewables (CR) scenario came very close to the network loading of the TD scenario;
however, TD was selected under the consideration that using the same scenario as before
generates consistency with previous year's results. If available resources allow, the SC team
would run sensitivities against other scenarios and other relevant parameters (e.g
interconnector flows) to report the difference in the boundary capabilities for different
system conditions.

2.3. Cost-benefit analysis

NGESO has to produce recommendations that fall within the range of “proceeding” or “not
proceeding” the nextyears’ actions to secure that the projects that are critical will be in place
at theright time.

To complete this task the NOA process starts by finding the optimal set of reinforcementsin
the system (from a cost-benefit point of view) for each of the four FES scenarios which
describe four different future conditions for the system. The set of optimal reinforcements
for each scenario is a subset of a total of near 200 projects (for the 2019-2020 NOA process)
presented by the transmission operators. Each project has an “Earliest In-Service Date” (EISD)
which corresponds to the earliest year the project could be in place, but the cost-benefit
assessmentwill determineifitis better to build the reinforcement by EISD or later on.

The deployment of a subset of projects is governed by interaction rules. Some projects:

e can be mutually exclusive,
e must follow other project(s), or
e must happen together with other project(s).

On top of these 3 interaction rules, some projects might not be feasible to build
simultaneously because of conflicting outagesinthe networkthat are requiredto deploythe
new infrastructure.

Itisalsoimportant to highlight that not all the combinations of projects have a corresponding
boundary capability evaluation, as it was describedin the previous section. Also, the impact
of some combinations of projects on capability is available for some boundaries and not for
others. If no informationisavailable foraspecificboundary given aset of reinforcements, the
base case value for the boundary is considered.

13
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Figure 5. Cost-benefit analysis process

The previous rules and the considerations about information availability reduce the search
space of combinations of reinforcementsin each scenario toimpact the boundary capabilities
of the system. The search is conducted in two phases, phase | and I, also known as path
finding and timing phases, respectively. As depicted in Figure 5, these two phases yield an
optimal path of reinforcements for each scenario; the resulting paths enter phase Il or logic
phase, to calculate the permutations necessary to run the LWR process.

The following sections describe the actions conducted within the phases of the CBA,
highlighting duration, assumptions, inputs and results.

2.3.1. Pre-processingand power system modelling

The CBA analysis relies on the techno-economic
modelling of the system to assess the trade-off
between additional investment in transmission
and the corresponding benefits associated to the
reduction of the transmission constraints costs.
NGESO uses BID3, which needs to be fed with
information about the structure of the GB’s
power system to describe current and future
conditions.

The boundaries that represent the GB systemare
definedinthe ETYS. These boundariesinteract, as
illustratively depicted in Figure 6, defining areas
that are then used to determine the generation
technologies and aggregated load that represent
each of them. Each area is represented as a
balancingnode, andthentheyare interconnected
through fictitious transmission lines without
transfer limits. The constraints that matter to
limit flows between areas are those associated to
the boundaries, which are imposed by
determining all the transfers between areas that
cross the boundary. For instance, for boundary
B1, the flowsthroughlines2,3and 6 (F;,, F;.3 and

B2

Other
Countryg

Figure 6. Boundary modelling
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Fy¢) respectively are constrained by the boundary capabilities of B1 (BCpq,BCES") as follows:

—BCE‘;U < FLZ + FL3 +FL6 < BCBl

Agivensetof transmissionreinforcements may affect the value of BCg1 and otherboundaries.
To assess the effect of a set of reinforcements on constraint costs, the boundary capabilities
are changed in BID3 when the reinforcement is considered. The associated benefits are
balanced out by the investment costs of the corresponding reinforcements.

To get to this point, first itis necessary to determine the base network for GB, whichisbased
on current system conditions and projects under construction.

The interaction with neighbouring countries is assessed a priori, through a simplified
description of the GB system and its neighbours. BID3 is run considering the conditions for
each of the scenarios. This allows creation of bidding price functions for every time step for
all neighbour countries. These price functions are later used to determine interconnector
flows when assessing the detailed operation of GB.

There is an additional considerationin regard to the general approach to model the system.
The system displays a high degree of decoupling between the south region (England and
Wales) and the north region (Scotland); reinforcements in one region show a relatively low
impact on the distribution of the flows inthe other region. By assuming that reinforcements
in one region have low impact on the opposite regioniitis possible to limit the combinations
of reinforcements that need to be studied to derive the capabilities of the boundaries
contained in the incumbent region. The base networks used to analyse each region are
reinforced on the opposite region to avoid systematic bottlenecks that can degrade the
quality of the resultin the target region.

BID3 models a linear economic dispatch of generators, based on a rolling horizon approach
within each year under consideration. Years are assumed to be independent, which means
that results are not transferred from one year to the next. The modelis run basedon 3 or 6
hour steps, where the representing values for load and variable renewables in a given step
are selected by choosing a random representative hour within each 3 or 6 hour period (e.g.
for step 7-12, the operation could be represented by hour 9 for all the time seriesinvolved).
Variable renewable units, load and other input parameters are arranged in a database for all
the hourly periods and all scenarios in the planninghorizon.

Another important aspect of the pre-processing stage is the consolidation of the so-called
System Requirement Forms (SRF) into data ready to be used in the BID3 simulations. These
forms are provided by the TOs and they contain the information about the different
reinforcement options, including EISD, capital expenditure (CAPEX), outages, rules, boundary
capabilities (thermal, voltage, stability), etc.

When all the information required torun the CBA is ready, the ECON team executes the path
finding phase.

2.3.2. Phasel: Path finding
The objective of this phase is to determine potential development paths for the network in

each scenario and each region. All the analysis is run in Microsoft Excel in a purpose-specific
arrangement of spreadsheets and macros (the tool is known as COMP) to prepare BID3 input

15



filesand read results. This phase spans for around 4 weeks and 8 people are directly involved
in the task (one for each scenario and each region).

The process is broadly trial and error. By running the base network, the cost of each boundary
constraint is determined foreach year (and for each scenario). This signalises the boundaries
that require capability expansion, hinting what reinforcements should be considered for the
system. The boundary capabilities associated to the sets of candidate reinforcements to
addressthe previous constraint costs are includedin BID3; a new case studyisrun inorder to
determine the cost of constraints associated to the new boundary capacities.

The results of the BID3 runs are arranged inthe form of a matrix displaying boundaries onthe
rows and years on the columns. By exploring different entry years (after EISD) itis possible to
visually recognize (heatmap) the changes in the constraint costs in each boundary to identify
further reinforcementrequirements.

After quantifying the benefits of deploying different combinations of reinforcements, this
information is used to determine the optimal entry year of each reinforcement. There are
reinforcements that clearly dominate the pool of options; hence the resulting paths have
common combinations that branch out.

The resulting paths are compliant with the rules mutually exclusive, must follow, and must
happen together.

2.3.3. Phasell:Timing

The most important aim of this stage is to check that outages associated to the construction
of different reinforcements do not produce clashes that can make the path infeasible. The
clashes strictly happen during lead-time because they are related to operation issues while
building the reinforcements. If the clashes were not lead-time related, they would be part of
the mutually exclusive rule.

If a clash is found, the entry date of the reinforcements creatingthe problem is changed until
the lead-time clashis resolved. If further clashes are created, the process continues until the
deployment of the reinforcementsis clash-free.

After solving all the clashes by displacing reinforcements, one of the paths found in the
previous stage will yield the largest benefits. This path is considered optimal (one for each
scenario for each region). All the reinforcements that are critical in one or more of the
scenarios associated to these paths enterthe final stage (logic phase) to conduct the LWR.

Phase Il takes around 1 weekto be completed using 8 people.
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2.3.4. Phaselll: Logic

Each of the paths found in phase Il is a collection of reinforcements and entry dates. Those
reinforcements whose optimal entry date is the same as its EISD in any of the scenarios, are
classified as critical. The logic phase looks to determine the LWR strategy among all the
possible permutations produced by proceeding with or delaying each of the critical options.

scenarios
< < >
Scenarios
EISD| 1 | 2 | 3 A [cx 0|
7 ' Ry
- A 2020 | 20 B K| Bfx|x]|x critical
5§ S
25 C2) C X | X
o% DX | x| X
D 2021 | 21 | 21| 22 i
& - E|lx|x]|X
3
85 | F X
L (=] D
20 Q| G
[e) & X X
H |l x X

Figure 7. Example for a system with 2 regions and 8 reinforcements

Figure 7 presents an example to depictthe concept of critical reinforcements. Let us consider
there are three scenarios and four options in each region of the system. After running phases
I and IlI, the results will look as presented on the left-hand side table in Figure 7. All
reinforcements in the north region appear active in the paths found in phase Il for one or
more scenarios. In particular, reinforcements A and D become optimal on their EISD, which
means that they are labelled critical.

Let us now assume that there are no critical optionsin the southregion. Then, as depictedin
the right-hand side diagram in Figure 7, all non-critical reinforcements optimal entry dates
(red boxes) for each scenario are fixed to the value found in the previous phase. The critical
options entry dates are permuted between the optimal entry date (EISD for some scenarios)
and delaying it one year, thus creating new deployment paths that may require running
further studiesin BID3 to determine their operational costs.

It is relevant to highlight that those reinforcements that need to be deployed by EISD are
critical because any delayinthe decision about proceeding would prevent the reinforcement
to become available when the system needs it (according to the optimal paths found in the
previous phases).

The process of permuting all the critical options between the states “proceed” or “delay by
one year” gives form to the so-called “single year LWR”. Consideringthe example presented
in Figure 7, the results for the permutations of the two critical options would look as
presentedin Figure 8. The four permutations produce 12 different cases, considering that the
entry year for the reinforcements vary depending on the scenario. Each case will have a
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different net present value (NPV), which will
allow to compare the four strategies
(permutations), calculate the regrets and in turn
determine the minimum (among strategies)
maximum (among scenarios) regret. In Figure 8,
the strategy that yields the LWR is permutation
3, which considers proceeding with both options.
This yields the Proceed recommendation for
reinforcements A and D, that is, over the
followingyearthe work onthose reinforcements
should continue, or start, to maintain the EISD.

The Delay recommendation is given when an
option is optimal and critical but delayingit by
oneyear resultsinlowerregrets. This means that
phases | and Il show that the optimal time to
deploy the expansionis EISD for at least one of
the scenarios, but when permutating and
running the LWR, delayingits deployment by 1
year is optimal from the point of view of the LWR
metric. Another recommendation that can be
deduced from this process is to Hold. For those
reinforcements whose optimal in-service year is
later than EISD there is no pressing need to
continue developingthat option. Delivery of this
reinforcement should be delayed by at least one
year.
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Figure 8. Permutations and calculation of regrets

The process can also result in the Stop recommendation. A reinforcement that is already
beingbuiltor procured, which does not appear in the optimal paths stemmingfrom phases |
and Il in the current NOA, should not continue. In a similar fashion, an option that was not
beingbuiltand does not appear in the optimal paths, getsthe recommendation Do not start.
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2.4. Network Option Assessment for Interconnectors

NOA for Interconnectors (NOA IC) aims to provide a quantified assessment of the potential
benefits of increased interconnection with neighbouring countries. The NOA IC and the NOA
are not interdependent; the results found in the NOA are used as the input information for
the NOAIC, but the results of the NOA IC are not fed back into the current NOA process, they
are used as an inputin the next year’s FES process, hence influencing also next year’s NOA

process.

The NOA IC methodology is a techno-economic
assessment of the optimal level of interconnection
capacity for GB. It evaluates the social economic
welfare (SEW), that is, the overall benefit to society
of a particular course of action, which includes
pondering constraint costs and capital expenditure
costs of both the interconnection capacity and
network reinforcements necessary to increase the
transfer capabilities between GB and selected
countries in Europe. The NOA IC does not assess the
viability of real projects, it only indicates the amount
of interconnector capacity and the countries to
interconnect that create the most SEW. Currently,
the path for expansion of interconnection is
produced for each scenario independently.

Figure 9 presents a diagram of the general steps
taken to run the assessment. Firstly, the list of
interconnection location options is determined, and
each of them is assigned an interconnection capacity
of 1GW. Second, in the context of a base network
(results of current NOA and current interconnection

- Remove
Interconnection options (all ‘_°Pt'°“
1GwW)
. S
Add
option | Base case level of
Interconnection
NPV for each option
isolated
L_| Selection of option with | |
maximum NPV
. >
4 L )
Stop if max NPV < 0 or no
more options
\ J
Test benefits of extra
0.5GW for selected options
. S

Figure 9. NOA IC steps

levels) each individual alternative is added at a time, to assess its SEW. After running the
analysis for all the options, the one with the most SEW is added to the base network. The
process continues until all interconnections have been added or if none of the remaining
options generates positive SEW. After defining the set of 1GW expansions that result in
positive SEW, an additional step of adding 0.5GW to the subset of selected expansions is
conducted to determine if more SEW can be captured from additional interconnection levels.
The optimal deployment path is presented for each of the scenarios under consideration.
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3. Literature review and international best practices

3.1. Uncertainty in electrical power system Transmission Expansion Planning (TEP)

3.1.1. Uncertainty sources

Power systems are currently heavily influenced by development of energy policy, growth of
new technologies and evolution of new business models. All these lead to high and growing
uncertainty. This section reviews the main uncertainty sources influencing transmission
expansion planning (TEP). CIGRE’s review on uncertainty in optimal power system planning
[6] is the starting point of this analysis.

1.

Load growth: Uncertainty in demand development has been traditionally one of the
system planner’s main concerns. In fact, most planning methodologies already include
some level of uncertainty in demand. Currently, demand patterns are expected to change
due to electrification of end-uses (e.g. cooking, heating) and the appearance of new
technologies (i.e., electric vehicles, electric heat pumps). Furthermore, these new
technologies can potentially be responsive to system conditions through demand side
management (DSM), distributed storage, etc. In this context, there are high levels of both
short-term (e.g., higher variability and uncertainty, price-responsive demand) and long-
term (e.g., levels of electrification of other sectors, energy efficiency measures)
uncertainties associated with the demand side.
RES growth: The penetration level of renewable energy sources is increasing in the
system due to energy policies and cost reduction, especially in the case of Distributed
Energy Resources (DERs), which has changed the traditional view of the distribution
network as a passive network. These new elements needtobeincludedin both network
operation, considering the increase in variable and partly unpredictable and non-
dispatchable generation, and therefore increasing operational uncertainty, as well as
network planning, considering the uncertainty in volume, location and timing of
renewable energy sources (RES) connection.
Commercial technologies: Traditionally, powersystems have required high investments
and considerable lead times to implement network changes. Nevertheless, new
technologies (i.e., DSM, battery storage, etc.), can result in lower investment costs and
shorter lead times compared to traditional infrastructures. However, they are
characterised by cost functions that are largely based on operational cost (which are
typically uncertain) rather than investment costs as for traditional asset. This creates
issues in how to compare these two types of assets (traditional investment-heavy
infrastructure with relatively small operational costs and low-investment asset with
considerable operation costs), also considering that, depending on the regulatory
framework, new technologies may not belongto or be operated by the system operator.
Regulatory and energy policy environment: Energy policy and regulation are currently
under continuous revision in most countries, being a great source of long-term
uncertainty. A few of the most remarkable ways in which regulation and policy might
affect powersystemsare the following:
a. Influence the cost of certain technologies by directly supporting their development
using subsidies or by taxing other technologies. For instance, subsidies to promote
residential PV are a common practice in many regions of the world.
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b. Introduce new schemes which affect the paradigm of the sector. For instance,
enforcingthe consideration of environmental issues, promoting the development of
certain regions, or consideringinterconnection objectives with othercountries.

5. Electricity markets and regulation: Closely related to energy policy, in regions with high
decarbonization targets there is an ongoing revision of power market structures and
mechanisms that can have crucial effects on economic dispatch and power flows.
Furthermore, new technologies have triggered the appearance of new markets, which
are currently under study. For instance, the increase of renewable penetrationlevel and
the full retirement of coal plants by 2025 is challenging NGESO to fulfil its role of reliably
operating the GB powersystem. However, the GB electricity wholesale market does not
offer enough incentive to build relatively low-carbon conventional generators, e.g.,
combined cycle gas turbinesand biomass plants, which are required to enable adequate
reserve margininwinter peak periods. Therefore,a capacity market mechanism hasbeen
introduced to give extra financial support to peak capacity contributor since 2014 [7].
Similar challenges are being faced in other jurisdictions worldwide, for example in
Australia

6. Generation mix: Changes in the generation mix are a source of long-term uncertainty as
well. As has been mentioned throughout this section, new technologies have emerged
and are beingintroduced with high penetration in power systems worldwide, changing
the generation mix in most regions. This change may be driven by policies (e.g., subsidies
for renewables), extreme events (e.g., catastrophic events leading to closure of nuclear
generation), new ancillary services requirements in the presence of renewables and
asynchronously connected resources (e.g., requirements for faster frequency response
and minimum system inertia), etc.

7. Investment cost: The uncertaintyin (reduction of) investment costs of new technologies
increases the uncertainty of the planning problem, as it might change the optimal
investment option (both in resources portfolios as well as in asset to facilitate the
development of new resources) in a few years. For instance, the cost reduction of new
technologies such as high-voltage direct current (HVDC) might lead to a totally different
optimal design of reinforcement. The substantial cost reduction of renewable generation
and batteries could also substantiallyimpact the planning exercise.

Hence, in this rapidly evolving and highly uncertain context there are a number of new
opportunities but also risks. Planning the electricity network using modelling that is able to
consider rightfully all these uncertainty elements is therefore key to provide cost-effective
solutions.

3.1.2. Uncertainty factors in TEP

As mentioned above, there are seven key uncertainty factors that have beenidentifiedin the
TEP process. Based on the documents ([1]—[3], [6], [8]-[13]), which describe the current TEP
practices of six countries across four continents, Table 1 summarises the uncertainty factors
currently being considered or which are material but are not considered by corresponding
network planner.

It can be noticed that load growth and RES uncertainty is being considered in all countries,
although State Grid considers the increasing penetration of RES in a deterministicway, asthe
planning of renewable energyin Chinaisunderthe jurisdiction of the National Energy Agency.
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As for generation mix, this uncertainty factor has been widely acknowledged by all six
network planners that have been reviewed, but only the Australian Electricity Market
Operator (AEMO) and EirGrid have made relevant considerations on the impact of evolving
generation mix, e.g., by setting new frequency response requirements and inertia constraints,
limiting the maximum output of single generator to reduce contingencysize, etc. NGESO has
also begun to assess the impact of increasing renewable penetration by including rate of
change of frequency (RoCoF) in its economicdispatch modelling.

With regards to new technologies and commercial solutions, which can range from direct
controls of existing assets (i.e., generators intertrip and de-loading, demand response) or
investing non-network based assets (i.e., batteries), although there are relevant technology
deployments in France, UK, Australia and Ireland, these alternative options have not been
systematically considered in transmission network planning to defer or avoid investments of
traditional infrastructures (i.e., power lines, substations, etc.). It is worth to highlight that
NGESO has considered using commercial services as part of its network reinforcement
recommendations.

As for new technology’s investment cost uncertainty, this factor may directly influence the
planning decision of holding or proceeding with specific reinforcement options. However,
most network planners do not thoroughly consider economic risks and benefits of holding
investmentdecisions, asfor example carried out in the NOA process. It is worth mentioning,
however, that State Grid in China has a department which focuses on monitoring and
predicting costs of equipment, and this information is used in technology selections for
reinforcement.

The uncertainty of regulatory and policy environment is commonly embedded within the
scenario design process. For example, governments’ policies on decarbonisation target can
be interpreted as various expected futures, such as high renewable energy penetration level,
electrification of different sectors, widespread retirement of coal plants, etc. These actions
determine key projectionsin different scenarios, asin the case of National Grid’s Two Degrees
scenario.

With regards to the uncertainty embedded in energy markets and regulation, National Grid,
AEMO and EirGrid simulate wholesale and balancing services market operation by
implementing, with different levels of approximation, dispatch and redispatch processesand
biddingbehaviourintheiroperational model, which gives their network planning process the
capability to capture the potential impact of market changes.
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Table 1. Uncertainty factors of TEP considered by different transmission network planners ([11-3], [6], [8]-[13])

“¥": existand considered; “@®": exist but not considered;

Country Uncertainty factor
Load RES Generation New commercial Technology Regulatory Energy market
growth | growth mix solutions Investment cost environment and regulation
France
(RTE) v v ® ® ® v @
China
(State Grid) v ® ® v
UK
(NGESO) v v &) v @ v v
Chile
(CEN) v N &) ® ® @
Australia
( :\‘EMO') v v v ® @ v v
Ireland
(EirGrid) v v v ® ® v v

3.1.3. Modelling Uncertainty through Scenarios

Scenarios allow planners to model different evolution of uncertain variables as well as their
correlations. This strategy is preferred in most decision-making problems that tackle planning,
as it provides a balance between analysinga broad range of futuresand (technical) detail in
such analysis. Furthermore, they can be applied to some of the most common methodologies
used in decision making, including, potentially, methodologies based on probabilistic
approaches (in which scenarios have specific associated weights). Scenario analysis or
“scenario-based” approach is currently used by most system planners around the world to
model the uncertain future [6].

The number of characteristics of scenarios used in twelve selected countries are listed in Table
2. It can be noticed that most planners prefer to use less than five scenarios to represent
plausible futures, e.g., envisaging nuclear or coal plants retirement, increase of DER
penetration, electrification of heatingand transport, etc.

In some cases, the system planner builds scenarios or performs further studies to represent
(technical and economic) sensitivities around core scenarios. For example, AEMO has
developed two additional scenarios “Increased role of gas” and “Early exit of coal-fired
generation” around its Neutral scenario to represent two possible important
opportunities/risks in the future [10]. Terna (Italian grid operator) also uses two extra
scenarios to represent sensitivity of potential futures rather than the expected future [14].
Spanish transmission network planning uses three scenarios (central, superior and inferior)
to represent various assumption of the relationship between electricity consumption and
growth domestic product (GDP) growth [15]. NGESO is currently using a Monte-Carlo
approach inthe network assessment of the “Two Degrees” scenario, to add robustnessinthe
analysis of the boundary transfer capability with/without proposed reinforcements, as this
scenario isconsidered to be the one with highest network stress among all four scenarios. In
Swissgrid’s Strategic Grid 2025 proposal [16], two marginal scenarios, “Sun” and “Stagnancy”,
are built to check the long-term robustness of reinforcement options proposed in the two
core scenarios, whilst the two marginal scenarios are not used to identify any additional
network reinforcementrequirement. France, Belgium and Germany considered 3-4 scenarios
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to consider the impact of phasing out nuclear and coal plants with increasing penetration
renewable penetrationlevel [17]-[19]. In the cases of PJM and China, only single demand and
generation portfolio projections are applied in market efficiency (economic) and reliability
studies. PJM also emphasised that they also performed studies with different scenarios
consideringthe potential impact of Clean Power Plan imposed by the American government;
however, no detail information regarding the scenarios and relevant case studies were given
initsplanningreport [20].

Given the complexity of both technical and economicanalysis associated with scenario-based
planning, as well as the unfolding of uncertainty, some system operators have also envisaged
to reduce the number of scenarios that are considered in the process. For example, the
Chilean SO has decided to decrease the number of scenarios from five to three from 2020,
while EirGrid has removed the “Slow-Progress” scenario from its Tomorrow’s Energy
Scenarios 2019 [11].

As an important point to note, none of the countries listed in Table 2 explicitly considers
weighting scenarios in their CBA process, as there is no explicit probability assigned to the
scenarios usedin the planning.

Table 2. Number of scenarios used in transmission planning in ten selected countries ([1], [3], [20], [6], [9], [11], [13], [14],
[16]-[18])

Australia UK Italy Spain Switzerland France | Belgium | Germany | China | PIM(US) | Chile | Ireland
5423 4(1% 142° 3 2(4)° 4 3 3 1 17 5 3

3.1.4. Technical characteristics of models used in TEP

Other than identifying existing uncertainty factors and scenarios in several countries, the
technical details of the TEP models used by the seven selected countries already discussed
above are listed in Table 3. The table is divided into four sections, which follow the
methodology of TEP explained for the NOA process in Figure 4 and Figure 5, which is
considered to be common practice worldwide. More specifically, the four sections are
completedina sequential way in the transmission network planning process:

1) Economy zonal flow assessment: This analysis is aimed at mapping the variation of
the power flow between zones without imposing line limit constraints, which reflects
the flow requirement of an efficient electricity market in the future. NGESO usesthe
concept of boundariesinstead of zones in the identification of transferrequirement.

2) Network zonal flow assessment (current network): The security constrained analysis
isusedto identify the transfers at peak demand period and other snapshots which not
necessarily reflect system peak demand but can seriously stress the transmission
network between specificzones.

3 Two additional scenarios are built to represent the sensitivity of policy and risks faced by the Australian
National Electricity Market (NEM).

4 Only the “Two Degrees” scenario is usedin the network transfer capability assessment of NOA.

>Two scenarios are built to represent the sensitivity of the core scenario instead of reflecting the expected
future.

& Two marginal scenarios are constructed to test the robustness of reinforcement options, but the scenarios are
not used to determine additional reinforcement requirements.

7 PJMonly explicitly uses one demand forecast scenario in its market planning, butitalsomentionedin [22] that
it would consider the impact of government policy (i.e., clean power plan) on generation, but no detail
informationof relevantapproachesis given.
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3) Network reinforcement options assessment: The reinforcement options have been
identified at this stage, but their additional contribution to zonal transfer capability
needsto be assessed with network constraints such as based on steady-state thermal,
voltage and stability analysis, in both the intact system and the system with
contingencies. This quantificationis carried out inthis assessment.

4) System operating cost assessment: After retrieving the transfer capability with
various reinforcement options, these options are appliedin the operational model to
generate system operational costin the relevant scenarios, whose results are then fed
into the CBA process determiningthe best option for reinforcement.

The cycling period of the transmission network planning studies and the relevant reports are
in the range of 1 to 10 years. For instance, NGESO and EirGrid carry out the transmission
planning for the whole system everyyear, while Swissgrid only carries out the planningevery
ten years considering moderate changes of demand and generation mix.

As shown in Table 3, the planning horizon is generallyin the range of 15 to 20 years, except
for Swissgrid which only defines a transmission expansion plan for the next 10 years.
However, Swissgrid would then perform technical analysis against the robustness of its
reinforcement options for a 20 years horizon. For PJM, the planningactivity is splitinto two
parts: 1) the near-term planning with 5 years forward period to address reliability issues; 2)
long-term planning with up to 15 years forward period to reduce network congestion cost
and provide other economic benefits.

For the economy transfer capability analysis, the time resolution of simulation varies from
15 minutesto few hours across different countries. One practice to be highlighted is that both
Chile and Australia use load-block techniques which can reduce simulation time steps by
clustering several time periods, but only forthe periods with similardemand level ratherthan
adopting it with a fixed time length. This action can increase computational efficiency while
only marginally affecting the accuracy of the results compared to fixed-timeclustering. At the
same time, China and Chile perform simulations only with typical day(s) of each month and
then scale them up to representtransfervolumesvariation or annual operational cost.

For the network assessment of zonal transfer capability, there are countries which perform
more than a winter peak snapshot analysis. For example, Chile does not only perform
Winter/Summer peak snapshots, but also analyses specific snapshots that are likely to be
associated with maximum levels of power transfer across relevant zones. As mentioned
above, NGESO use the concept of boundaries instead of zones to reflect a wider range of
transfer capability requirementsin combination of several zones.

With regards to the network assessment with a combination of reinforcement options
shown in Table 3, most countries preferto perform the analysis at various demand levels to
mimicdifferent system operating condition besides the peak snapshot. Furthermore, it seems
that most countries under consideration perform thermal, voltage and stability tests. This is
done for the network under different types of contingencies, such as N-1and N-1-1. On the
otherhand, other SOs perform extratests such as reactive power management and frequency
stability assessment, like in the case of AEMO.

For the operating cost assessment of reinforcement options, which is used in CBA process,
different countries use different sampling period varying from 1year by NGESO up to 10 years
by State Grid and Swissgrid. Additionally, with regards to the modelling of system operation,
some countries use simple economicdispatch, while other countries adopt unit commitment
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analysis to better capture the technical characteristics of conventional generators (minimum
up- and down-time, start-up/shut-down activities, etc.). The technical constraints of system
operation also vary in the simulation performed by different planners. In terms of modelling
of the network, the maximum flows of individual transmission lines are typically calculated
according to thermal, voltage and fault-clearing standards, then the results are mapped as
numerical constraints in economic-dispatch/unit-commitment. However, the transfer
capability between zones applied in the economic dispatch model SPER (which is used by
State Grid) is more strictly constrained by monthly energy exchange allowances between
zonesor energy export allowances of specificgenerators, while the sum of capacity of lines s
used as the upperlimitforthe transfer capability [21]. With regards to ancillary services, most
countries model these as “lumped” spinningreserve through derating online plant capacity,
while AEMO also modelsthe requirement of minimum inertialevel due to RoCoF, which can
be crucial for low-inertiasystem operation. PJM emphasises that a security constrained unit
commitment model is applied for market efficiency analysis which is used to produce input
for CBA.

Most importantly, for investment decision-making tools, only NGESO and AEMO appears to
use LWRS, while other countries use deterministicapproachto obtain the bestreinforcement
option that brings NPV maximisationin each scenario. However, from the review conducted
itis unclear how a final, integrated decision across scenarios would be made. It is also worth
mentioningthat PJMalso uses a benefit-to-cost threshold (currently 1.25) to screen individual
transmission enhancement proposals. The benefit-to-cost ratio is calculated by using the
presentvalue of project’sannual benefits over the first 15 years divided by the presentvalue
of the revenuesrequired overthe same period [22].

In the following section we will focus on assessing the implication of using different decision-
making tools.

8 AEMO arealso considering adopting a LWR approach in their Integrated System Plan (ISP).
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Table 3. International practice of technical modelling characteristics in TEP process ([1], [2], [14], [16]-[18], [23]-[26], [3], [6], [8]-[13])

Simulation features Countries
Stage UK France China Chile Australia Ireland Switzerland us Spain
(NGESO) (RTE) (State Grid) (CEN) (AEMO) (EirGrid) (Swissgrid) (PIM) (REE)
Every 1-2 Every 6 years
Study rolling period Every year Every 2 years Every 5years Every year Every 2 years Every year Every 10 years 9
years
Planning and CBA horizon 20years 15 years 15 years 20years 20+ years 20years 10(2010) years | 571511 years 10-20 years
Software BID3 ANTARES SPER OSE2000 PLEXOS Not available Not available Not available
Zonal  flow ftl:(;ll:ftti::,: 3-6h (up to 1 hour) | Hourly 15 mins to hourly 8 load blocks13 Few load blocks Hourly Hourly Hourly
assessment Tvoica] day/
: : : ; ypical weekday/ | From snapshot to
Econom p:
{ v) Sllmulat|on Whole year Whole year Typical day in each weekend in each 14 Whole year Whole year Whole year
timescale month whole year
month
Software DIgSILENT/POUYA | CONVERGENCE PSD-BPA DIgSILENT PSS/E, DSA N/Alz Not available Not available
) ) Winter and Winter and
Zonal flow | Simulation \s,xlant:l:ot pz:z Snapshots Typical snapshots Z\rl:gtfrz:sjfz:ne;ak Zz?‘r’nka:gd oter sumrﬁer peak, summer peaks
assessment timescale P P yp p P N/A and light load
year-round snapshots snapshots 15
(Network) snapshots
System
N-1/N-D N-1 N-1 116 N-1 N-1/N-1-1 N-1
condition / Intact/N-1 /
Software DIgSILENT/POUYA [ CONVERGENCE PSD-BPA DIgSILENT PSS/E PSS/E, DSA Not available Not available Not available
::mfogcet:::s Sampling 17 Not available Fvery typical Every year Every year Not available Every 10 years Every 2-3 years Every year
P! frequency Every year year18 vy vy ry 10y ry 2-3y vy

° PIM carries a 24 months cycle for long-term and long lead-time projects and a 12 months cycle for near-term projects to address reliability criteria violations.

10 5cenarios for 2035 in “Strategic Grid 2025” [16] are only used for robustness evaluation of reinforcement options.

11 Near-term planning only carried out on year 1 and year5 models, while long-term planning has a 15 years planning horizon.

12 Swissgrid directly tests different reinforcement options instead of building up boundaries.

13 Using load-block methods to aggregate similar demand periods into one time-step in the simulation.

14 Using snapshot simulation to determine which reinforcement options appear to be economic options and then including them in whole yearanalysis.

15 Light load conditions are referred to the demand level as low as 30 percent of summer peak to address high voltage issue in network [22].
16 N1 compliance is checked at peak transfer condition, while the transfer during summer and winter peak periods are examined in an intact system condition.

17 Network assessment is performed every year with the corresponding demand and generation profiles, while the corresponding network configuration of eachyearis selected from four potential settings, which
are the networks in 3, 5, 7 and 10 years (counting from the current year) respectively.

8 0ne typical yearis chosen from next 5-10 years range and another one is chosen from next 10-15 years range.




assessment . . Winter peak Peak and other . Winter and Winter and
Simulation . Peak demand | Peak/low demand Peak congestion
(Network) . snapshot and | Snapshots Typical snapshots demand level summer peak summer peaks
timescale snapshots snapshots snapshots
year-round snapshots snapshots
Constraints Thermal; Voltage; Stability; Contingency analysis
Software BID3 ANTARES SPER OSE2000 PLEXOS Not available Not available Not available Not available
?;r:l?::fy Every year Not available Every typical year Every year Every 5-7 years Every 5years Every 10 years Every 4 years Every year
Simulation Daily energy limit
. 3-6h (up to 1 hour) | Hourly 15 mins to hourly 8 load blocks to hourly power | Half hourly Hourly Hourly Hourly
resolution
balance
. . ) ) Typical weekday/
S.Imulatlon Whole year Whole year Typical day in each weekend in each | Whole year Whole year Whole year Whole year Whole year
timescale month
month
Security Economic
Operationa | Economic Unit Economic Economic Simplified 19 it | Economic Economic constrained dispatch
| model dispatch commitment dispatch dispatch commitment dispatch dispatch unit
Reinforceme commitment
nt options . Network
assessment . Network constraints . Network
(Economy) . Network constraints (thermal constraints
e  Network constraint | . (thermal, voltage ,and (thermal,
constraints s (thermal, network voltage and stability) voltage and
thermal voltage ) stability) stability)
( ’ constraints . Lumped
Constraints voltage, and . Lumped . Lumped spinning Not available Not available Not available ° Lumped
stability) stability) spinning spinning reserves spinning
. Lumped . Lumped reserves reserves . System reserves
spinning spinning . System inertia . System
reserves reserves inertia constraint inertia
constraint constraint
iabili LOLE/LOLP/EE
;Z';b"'w LOLE SO /LOLP/EEN | geng EENS20 EENS Not available Not available LOLE LOLE and LORE
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20 EENS is used as a penalised variable in the ED optimisation rather thanas a compulsory standard to meet.




3.1.5. Considerations on international best practices for TEP

Based on the review performed, there are few key points that it is possible to highlight:

e Planninguncertaintyis typically dealt with by scenario-based approaches.

e Most countries adopt a (very) limited number of scenarios in their planning
methodologies, oftenbuilding sensitivities around main scenario(s) ratherthan new, very
differentscenarios per se.

e No probability weight is associated with the considered scenarios, possibly again also
based on the fact that many scenarios are only sensitivities.

e Scenarios seem to be typically analysed independently and then planning options are
chosen based on specific rules to make an integrated decision across several scenarios,
while only NGESO performs an integrated analysis across multiple scenarios via LWR.

Based on our review and to the best of our knowledge, NGESO’s NOA methodology to plan
and reinforce the transmission network seemsto be at the forefront of the state of the art of
planning under uncertainty. This is essentially because: 1) there is a clear and publidy
available methodology that describes how an investment decision is performed across
multiple possible and uncertain scenarios that are all simultaneously accounted for in the
decision making process; and 2) the methodology allows consideration for the potential
negative consequences of an investment decision (basically via using the regrets as risk
measure — see further below), rather than, for example, just going for onerous investments
that might be driven by the most extreme case (this would correspond to a minmax cost
approach — see again further below). However, before providing further methodological
considerations and explanations for planning under uncertainty, we should also point out a
clear opportunity forimprovementin the NOA process which has emerged from our studies.
This is the inclusion of additional operational snapshots in the technical analysis besidesthe
current winter peak assessment, which could be consideredinlight of increasing operational
complexity and uncertainty that might drive worst case flows across boundaries at different
times of the year. Similarly, inclusion of new operational characteristics and constraints, such
as associated with low-inertia conditions, could be desirable.

3.2. Decision making under uncertainty

The previous section has focused on uncertainty, the uncertainty sources and their inclusion
in the transmission expansion planning in different countries, as well as modelling those
uncertainties through scenarios. When a system planner faces different scenarios to model
uncertain future conditions, the TEP problem effectively becomes a decision-making
problem. However, asshownin 3.1.4, most countries do notinclude advanced methodologies
to model decision-making problems. In most cases, the planner only assesses the NPV for
individual scenarios, without combining scenariosin any (at least publiclyclear) way. Different
rules, often based on practical experience, are then likely to be used to select the
reinforcement options that may perform best across multiple scenarios. In fact, the
international survey from section 3.1.4shows that only NGESO is considering the TEP problem
including uncertainty as a decision-making problem in the sense of combining scenarios (via
LWR).

Nevertheless, in the research literature there are several examples of applications where
transmission (and distribution) expansion planning under uncertainty could be treated as a
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decision-making problem. The mostrelevantand well-known methodologies are probabilistic
assessment (which may be seen as a relatively simple version of the more general field of
stochastic programming) and min-max (or minimax), applied to both costs (min-max-cost,
MMC) and regrets (min-max-regret, MMR, also often indicated as least worst regret, LWR).
Robust programming, min-min cost, and real options are other methodologies potentially
available to solve transmission expansion planning problems with uncertainty, while certain
applications of these methodologies alsoinclude specificrisk measures that may be relevant
for TEP. We will briefly review these methodologies in the following subsections.

3.2.1. Probabilistic assessment/stochastic programming

Probabilistic assessment (also referred to as “probabilistic choice”) falls within the more
general stochastic programming/stochastic optimization framework, which may also include
multi-stage decisions. Thisis the somehow intuitive development of adeterministicapproach
whereby uncertaintyisintroduced through scenario analysis. It has a flexible formulation that
has drawn much attention, including efforts to develop a canonical framework, equivalent to
the one found in deterministicoptimization [27], [28].

The simplest formulation of probabilistic assessment problems is based on the use of
probabilities applied to different scenarios to enable the selection of the “statistically” best
solution. In fact, it originated from assessing the uncertain outcome of a significant number
of experiments, in which the frequency of occurrence is close to the probability value
assigned. These experiments would typically be carried out in fixed conditions, under the
same set of laws. The formulation of a probabilistic approach can be readily adapted to the
transmission expansion planning problem, in which a limited number of scenarios are
assigned (probability) weights and the best investment strategy is selected to optimise (e.g,,
minimise, in the case of cost) a given attribute (e.g., net present cost) across scenarios
through a linear composition of its values weighted with the respective scenario probabilities
[29], [30].

3.2.2. Min-Max

This general methodology, much used in the field of game theory, uses two nested
optimisations (min{max{}}) to model the decision-making problem under uncertainty. It
requiresa more complex formulation than stochastic programming, but in principle does not
require the explicit assignment of weights for each scenario, which is considered as an
advantage by system planners. However, adequate scenario definition may then become of
critical importance, because there might be “no compensation” amongscenarios, as generally
implied in stochastic programming. In a TEP problem, these two nested optimisations are
most commonly used with two attributes, namely, cost (min-max cost) and regret (min-max
regret).

3.2.2.1. Min-max cost (MMC)

In min-max cost (MMC), the two nested optimizations use cost as the value attribute. This is
intuitively a very conservative approach that would be undertaken by a (most) risk-averse
decision maker, whereby a high-cost scenario, and the desire to hedge against its
consequences, will eventually define the selection of the optimal investment strategy.
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3.2.2.2.  Min-max regret

Min-max regret (also referred as LWR in NOA) is a version of the general nested min-max
optimization where the value attribute is now a regret. Regrets are based on an ex-post
evaluation of the decision maker’s perception regarding its decisions, usually expressed in
monetary terms. The selected option is the one that minimizes the regret felt by a decision
maker after verifying that the decision he had made was not optimal given the future that
would have eventually actually occurred [22].

Regret functions can be built with different levels of risk-aversions, including non-linear
functions to model unacceptable outcomes for the decision makers (e.g., “vetoes” and
“absolute preferences”).

It has been pointed out that by shifting the focus on the decisions rather than the solutions
(as in the probabilistic approach), LWR may reflect better the real decision making process
[29], [30]. Furthermore, when regret is used rather than cost (asin min-max cost), a high-cost
scenario does not necessarily trigger the strategy selection, because regret compares the
relative performance of strategies within each scenario. This is a considerable drawback of
min-max cost when compared to LWR. On the other hand, it has been discussed within
previous NOA methodology reviews [31] that the use of LWR may also have drawbacks. For
example, while LWR may not be directly sensitive to the highest-cost scenario, it may still be
sensitive tothe relationship between “worst” and “best” scenarios, so that itis again possible
that extreme (and particularly high-cost) scenarios may somehow drive the results.
Furthermore, the methodology may not be robust to the inclusion of “irrelevant” investment
options, which may lead to “spurious” decisions. In contrast, a min-max cost approach does
not sufferfrom the latter issue?l.

Itisalsoimportantto notice that, as discussed by Arroyo et al [32], and as in classical literature
on decision making underuncertainty [33], [34], regrets can be used as a measure of risk (see
also below for other risk measures). A methodology such as LWR that aims to minimise
regrets (and therefore risk) is therefore intrinsically risk-averse.

3.2.3. Robust programming

In robust programming or robust optimization, the decision maker imposes feasibility forall
possible scenarios, even if not all the scenarios but only the boundary ones are explicitly
modelled. Since the worst-case scenario must be feasible too, it effectively becomes the
scenario drivingthe decision. Therefore, the risk aversion of this methodology is again highly
dependent on the scenario definition. Robust optimization can implicitly account for all
scenarios withinthe uncertainty set through efficient search algorithms, an advantage when
dealing with large sets of scenarios compared to the previous methodologies[35].

3.2.4. Min-min cost

Min-min cost has a similar formulation to min-max cost, that is, a min{min{}} nested
optimization that does not require the explicit assignment of weights. Conceptually, it is
opposite to min-max cost, since it aims to obtain the highest benefits by minimizingthe cost

21 However, with regards to NOA, as all the proposed options are plausible, technically valid and checked
beforehand, therisk of including “irrelevant” options in the LWR analysis should be fairly limited.
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in the lowest-cost scenario. In the context of a decision-making problem, itis used when a
risk-seeking decision maker is willing to obtain the maximum benefits from uncertain
scenarios, essentially regardless of risk.

3.2.5. Realoptions

Real options analysis is a methodology coming from financial options theory. Its application
comesfrom the belief that evaluatinginvestment options using the traditionalindicators such
as NPV, net present cost (NPC) or the discounted cash flow (DCF) is not adequate ina number
of investment problems, including for TEP. This belief mainly comes from the assumptions
regarding the irreversibility of investments that these metrics make, which cannot capture
realistically the flexibility of the decision-making process. In this light, the framework
proposed by Real Options Analysis allows a better quantification of the benefits of flexible
investments [36].

However, most proposed real options models are not adequate for transmission expansion
planning problems. For example, analytical models using the likes of Black-Scholes formulas
only account for two correlated uncertainties, modelled assuming certain distributions and
making a number of other questionable assumptions. On the other hand, lattice models
cannot consider multiple interactions between options. Furthermore, concepts such as
volatility or the effect of competition need to be carefully considered in real options, as the
original settings the field of finance are inherently very different. Schachter and Mancarella
thus concluded that rather than real options models from financial mathematics it is more
adequate to introduce a “real options framework” or "real options thinking" to deal with
electricity systeminvestment decision making, which can indeed deploy methodologies such
as multi-stage stochastic programming or LWR [37].

3.2.6. Measuringrisk in decision making: VaR and CVaR

The previously presented methodologies are used for making decision according to a value
attribute (e.g., cost) in an uncertain environment. Regardless of the methodology used,
decisions will eventually have associated adistribution of expected consequences (e.g. costs).
The decision will leadto a different outcome in each scenario, and it may be the case that for
a given scenario the outcome is not acceptable for the decision maker. Therefore, when
uncertainty is involved, any such problem is intrinsically related to a decision’s risk.
Approaches from risk management may therefore be incorporated in the decision-making
process to avoid unacceptable decisions.

The most common way to handle risk when making decisions isto include a risk measure. For
example, Conejo et al. review different risk measures in their book about Decision Making
Under Uncertainty in Electricity Markets [38], namely, variance, shortfall probability,
expected shortage, Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR). In particular,
our view is that VaR and CVaR may be most suitable for applications that include risk
managementin transmission expansion planning problems.
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Given a loss function (i.e. a cost function) for an « € (0, 1) the VaR answers the question:
“Given an investmentdecision, whatis the highest cost | might experience with a probability
of a x 100%22?” Other interpretations of VaR can be found in [39]:

e The maximum costs that will not be exceeded with a given probability a x 100%;
e The a-quantile of the cost distribution;

e The smallestcostinthe (1 — a)x100% of worst cases;

e The highestcost inthe a x100% of best cases.

On the other hand, the CVaR, answers the question of “Given an investmentdecision, what
will be the average value of costs inthe (1 — a)x100% worst cases?” Thisrisk measureisalso
known as mean excess loss or average value-at-risk [38]. Other interpretationis:

e The average costinthe (1 — a)x100% of worst cases.

CVaR is often the preferred risk measure to manage risk in decisions. From the previous
interpretations of both measures, VaR informs about the cost when the worst cases start
(worst cases are defined by the selection of @) while CVaR informs what is the average cost
of those worst cases, providinginformation about their distribution. Therefore, CVaR is able
to better recognise scenarios with low probability incurring in very high costs (which will
substantially increase the average cost of the worst scenarios). This is an attractive attribute
for a risk measure in transmission expansion planning problems, where these low probability
and high cost scenarios can take place. Figure 10 illustratesin a cost distribution function the
definitions of VaRand CVaR foran a = 0.95:

Probablity Density Function of COSTS

The grey area
represents 5% of the total area
under the probablity density function

Probablity

COST VaRa—095 CVaRi-nos

Figure 10. Example of cost distribution function showing VaR and CVaR for a=0.95

CVaR mathematical properties are also more attractive than for VaR. For example, reference
[40] defines certain properties that are desirable forany risk measure, namely, monotonicity,
translation equivariance, subadditivity and positive homogeneity, sothatit is possible totalk
about coherent risk measures. VaR does not meet the subadditivity characteristic, while CVaR
meetsall criteria of a coherentrisk measure.

The previous reasons make CVaR an interesting candidate to measure and manage risk in
transmission expansion planning problems with uncertainty. For example, it may be used as
an ex-postanalysis of the result distribution of a decision-making problem, orincludedinthe
problem formulation [38]. Forinstance, a decision-making problem may be modelledby using
stochastic programming, whose aimis to maximize expected profits, and CVaR may thenalso

22 Alsoreferredto as a confidencelevel, with @=0.95 (95%) and a=0.99 (99%) common values used to define
VaRand CVaR.
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be included in the formulation of the objective function. In this case, weights between the
expectedvalue and CVaR are applied torepresentthe decision maker’s attitude towards risk.
A more risk-averse decision maker will increase the relative weight of the CVaR in the
objective function, while a risk-seeking decision maker will use a higher relative weight for
the maximization of expected profits.
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4. A unified framework for decision making under uncertainty

4.1.Scenario planning under uncertainty as a multiple-criteria decision-making
problem

In the previous section, different methodologies to model decision making under uncertainty
have been described. While there is a significant number of applications that use these
methodologies to solve different decision-making problems related to electrical power
systems, there is a general lack of research that aims to systematically assess and compare
the implications of selectingone methodology over another. Forinstance, [29], [30] are some
of the few studiesthat compare methodologies (i.e., probabilisticassessment and LWR) and
draw relevant conclusions, while most publications on methodology comparison do not reach
any relevantand general conclusions (see for instance [41]).

One of the main reasons is the absence of a unified framework that enables such
methodology comparison. In particular, most works consider probabilistic assessment, LWR
and min-max cost (which are the most common methodologies used in decision making) as
different frameworks, which hinders the possibility of carrying out a systematiccomparison.

However, below we will develop an idea that these three “most common” methodologies
(namely stochastic programming, LWR and MMC) do actually belong within a same, unified
framework. Our framework development is supported by concepts from multi-objective
decision makingandisinspired by Starr and Zeleny’sworkin [42] and follows closely the work
of Miranda and Proencain [29], [30].

It is also worth mentioning that in our analysis below we will focus on probabilistic
assessment, LWR and MMC for a few reasons:

- They are well-known and common methodologies for decision making;

- Asit will be clearer from our discussion below, they can be appliedin a straightforward
way to the current NOA methodology with only minimal changes in the very last stages,
i.e., wheninvestmentdecisions needto be made based on strategy cost/regrettables;

- Althoughrobust programmingand min-max cost are formally and theoretically different,
in practice if they were applied to the current NOA methodology they would coincide Z3;

- Min-min cost has not been included since it does not seem to be a suitable decision-
making tool to plan critical infrastructure due to its intrinsicrisk-seeking nature;

- Real options modelling and similarapproaches are primarily concerned with investment
flexibility and they might require more substantial changes to the current NOA
methodology: this is ongoing work that we are performing and the results will be
reported at a laterstage of the project;

- Likewise, use of risk measures such as VaR and CVaR is also part of ongoingwork.

The first step to build this unified framework is to realise that non-trivial decision making
takes place when facing multiple attributes or objectives that may be in conflict with each

2 As previously mentioned, robust programming’s main attributeis in fact to optimize by ensuring feasibility in
all scenarios (including, and in particular, the worst-case one). However, when used in the NOA process, all
available investment options have already been screened for (technical) feasibility. Hence, the decision
proposedby robust programming would effectively be driven by the highest-cost solutions asin MMC, thus the
equivalency between the two methodol ogies in this s pecific case.
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other. As presentedin [42], when facing a decision typically the decision makerhas a view on
the relative importance of each of the objectives. Therefore, each objective or attribute can
be assigned a weight, and be referred as weighted criterion. In a decision-making problem
withasetX ofn = 1,...,N weighted criteria, each objective or attribute x; has an assigned
weight A;:

X = (ll xl, 'A'] xj,...,/leN) (1)

The analogy with a planning-under-uncertainty problem across multiple scenarios
characterised by an attribute x; (for example cost or regret) and probability weight A;in the
scenario j, which we will explore furtherbelow, should have by now become evident.

For each of the weighted criteria (or weighted scenario, in our case), there is at least one
value preferred to all the remaining ones. A solution that has the preferred value for all the
weighted criteria is referred to as the Ideal Solution. The ldeal Solution is intrinsically a
virtually infeasible solution in any non-trivial problem, firstly introduced as a technical
artefact in decision-making problems in [43]. If it was feasible, the problem would be trivial
and ideal solution would be the obvious choice for the decision maker and there would be no
decision-making problem.

Evolving from the concept of Ideal Solution, Zeleny defined compromise solutions as the set
of feasible solutionsto a decision-making problem which are closest to the ideal one. These
compromise solutions cannot be improved in any objective without losing in another
objective. Intuitively, thisis the set of solutions that the decision makershall explore toselect
the final decision (best compromise solution). This set is also referred to as Pareto-Optimal
and a more detailed analysisregardingtheirrole in planning problems can be found in [44].

4.1.1. Multi-criteria decisions as a distance minimization problem

Using the previous concepts, it is intuitive that a multi-criteria decision-making problem’s
objective will be looking for which of these feasible compromise solutions are closest to the
ideal solution. A more formal definition of that intuitive decision-making objective is to
minimize the distance from the ideal solution. Therefore, the formulation of the decision
making becomes a distance minimization problem.

InFigure 11, we depictasimple example toillustrate the concepts discussedabove. The figure
representsa decision-making problem considering two weighted criteria (x;4; and x,4,). In
the problem presented, both weighted criteria can only take positive values, and the best
possible, desired value for both is zero (the similarities between this generic problem and a
cost minimization problem can again already be perceived and will be further discussed).
However, such an ideal solution, as aforementioned, is generally not feasible, and the set of
feasible solutionsfor the problem is explicitly shownin the figure. The figure also illustrates
the “intuitive” distance between afeasible solutionand the ideal in a two-dimensional space,
referred toby using L(y;), whereindexi € {1,..., K} denotes the i-th elementin the feasible
solution set. The distance between the feasible solution y; and the ideal solution is taken
here as example.
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Figure 11. Multi-Criteria Decision Making as a Distance Minimization Problem
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Finding the minimum distance in atwo-dimensional space, as shownin Figure 11,would seem
intuitive and straightforward. However, most decision-making problems are characterised by
a set of weighted criteriatypically largerthan two. The problemis therefore to “measure the
distance” of K candidate solutionsto the ideal solutioninan N-dimensional space and select
the closest among them. Measuring distances in N dimensions is now less straightforward,
and a suitable metricneedsto be considered.

To formulate the problem in the most general way, we use the general Minkowski metric
formulation to “measure distance” in an N-dimensional vector space, where Yij now refers
to the value of the feasible solution i in the weighted criteria j defined by x;;4;:

(2)

where L referstometricfunction, p isa parameterdefiningthe metric, i isthe index referring
to a specificcandidate solutionand j is the index referringto the criteria (space dimensions).
Using the general Minkowski metric formulation (2) thus allows us to formally define the
objective function of a multi-criteria decision-making problemin a generic way, where y;;
represents the candidate solutioni for the criterion j with its associated weight A;and the
distance of a candidate solution to the ideal solutionis to be minimizedin N dimensions:

min Ly (i) (3)

Once this general formulation has been presented, the following subsections will discuss the
use of different specificmetrics obtained when varying p from 1 to infinite.

4.1.2. Manhattan Metric

The Manhattan Metric measures the distance between two points by summingthe length of
all paths connecting those two points using only vertical and horizontal segments. Based on
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the example shown in Figure 11, the distance between the Ideal Solution and the feasible
solution 3 usingthe Manhattan Metric is representedin Figure 12.

3

Xy Az

X3242 X X

¥ _—

X314 X1 ’11

Figure 12. Example of Manhattan Metric to Measure the distance of Alternative 3

The previous definition of the Manhattan Metric corresponds to the General Minkowski
formulation when p = 1. Therefore, the distance of afeasiblesolution i tothe ideal is defined
with the following expression and then appliedto the example given for Solution 3.

N
Li(y) = Z|yij| (4)
J

Li(y3) = ¥31 + Y32 = X311+ X324, % (5)

24 The symbol of absolute valueis notincluded since the weighted criteria have been previously defined as
positive. Thisisalso the practical cases that we discuss here which always refer to positive costs and regrets.
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4.1.3. Euclidean Metric

The Euclidean Metric is the “traditional” geometric distance between two points, as can be
seenin Figure 13. In the Minkowski formulation the Euclidean Metric correspondsto p = 2,

and the following general expression and its exemplificative application to Solution 3 are
shown below.

Ly (i) = i(yu)z (6)
J
L) = V0302 + (032)% = Y G312 7 + (x322)? 7)
X2 | 5
X325 X 3¢ 3
X
X

X314 X1 ’11

Figure 13 . Example of Euclidean Metric to Measure the distance of Alternative 3

This metric may somehow be considered as a “halfway” approach between the Manhattan
Metric and the Chebyshev metric. The latter isexplainedinthe following paragraph.
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4.1.4. Chebyshev Metric

The Chebyshev Metric defines the distance between two points as the greatest of their

differences along any of the dimensions. This metric corresponds to the formulation of the
Minkowski metric when p = oo. Its general formulationis:

Lo (y;) = max(|yij|) j=1,..,N (8)

When applying this metric to measure the distance of Solution 3 to the ideal, L, is equal to
X 3144, which isthe largest value across both dimensions, as Figure 14 shows.

Lo (y3) = max(ys1, ¥3p) = max(xz1dy, X3245) = X314 (9)
X, A ‘
2 A2 x
3
X3242 X b4
X
’: S

X314 Xy A4

Figure 14 Example of Chebyshev Metric to Measure the distance of Alternative 3
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4.2. Implications of using a unified framework for decision making under uncertainty

In the previous section we presented a framework to turn a multi-criteria decision-making
problem into a distance minimization problem, also introducing the concepts of weighted
criteria, ideal solution and compromise solutions. The objective was to find the feasible
solutionthat is closest to the ideal (generally not feasible) solution forthe decision maker. It
was shown that there are different metrics available to measure a distance when dealing with
a N-dimensional space.

As already anticipated earlier, these concepts intuitively resemble the concepts used in
decision making under uncertainty, when uncertainty is modelled through scenarios. In fact,
as demonstrated below, these problems are fully equivalent. Table 4 summarizes the details
of such equivalency usingthe terminology of electrical powersystems planning problems.

Table 4 Comparison of Multi-Criteria Decision Making and Scenario-Based Decision Making Under Uncertainty

Multi-Criteria Decision Scenario-based Decision Making Under
Concept . .
Making Uncertainty
XA Weighted Criterion Probability-Weighted Scenario
Ideal Solution Bestvalueinall criteria Bestvalueinall scenarios
Minimize di i deal = Minimi
Objective function Minimize distanceto ideal |n|m|zefi|stancet0|dea rnimize
valueattribute (e.g., cost, regret)
L (y;) = Z]N |yi]_| Manhattan Metric Probabilistic Assessment
Iy ’ Euclidean Dist Euclidean Dist
Lz(}’i) — Zj (yij) uclidean Distance uclidean Distance
Loo(yi) = max(|yl-j|) j=1,..,N ChebyshevMetric Min-maxcostand LWR

In a decision-making under uncertainty problem in power systems, where a value attribute
such as cost or regretis minimized, the ideal solution will have avalue equal to zero (e.g., zero
costs or regrets) for all the weighted scenarios. However, different constraints make this ideal
solution infeasible, and investment strategies that involve some costs and regrets must be
pursued. Therefore, the objective is to find the investment strategy that satisfies such
constraints minimizing the selected attribute. This is equivalent to finding the solution
“closest” to the ideal. Different metrics have been introduced in order to find the closest
solutionin N-criteria problems.

Table 4 clearly demonstrates that as anticipated at the beginning of the section the most
common methodologies used for planning under uncertainty through scenario analysis
belong to the same framework as multi-criteria decision making based on distance
minimization, where the aim is to find the solution closest to the ideal. Itis thus possible to
conclude that probabilisticassessment, min-max cost and LWR are not different approaches,
but simply different metrics with the same purpose (distance minimization) to solve a
geometric problem. Therefore, if these apparently different approaches are just different
metrics to solve the same problem within the same unified framework, they can be
systematically compared to discuss their suitability in terms of what is the most suitable

41



metric to address the specific planning problem under consideration and, as mentioned
earlier, with minimal changes havingin mind the current NOA methodology.

The following section will address the implications of considering probabilistic assessment,
LWR and min-max cost as different metricsin a unified framework. Since both min-max cost
and LWR are applications of the Chebyshev metriconly appliedto different attributes, in the
following discussion we will focus on LWR, as it is currently implementedinthe NOA.

4.2.1. Implications of (not) assigning probabilities to scenarios

The NOA’s Methodology Review Report [31] mentions several times the advantage of LWR,
min-max cost and min-min cost in avoiding the use of “potentially miss-specified”
probabilities, as opposed to probabilistic assessment and more in general stochastic
programming approaches that require scenario probability weights. In fact, in stochastic
programming the weights or probabilities assigned to each scenario must be explicitly stated,
as the strategy selectionis based ona probabilisticapproach (for example, select the strategy
that performs best when averaging scenario-specific costs or regrets by their relevant
probability weights). This has led to a preference of approaches that avoid the explidt
assignment of probabilities, like LWR, over probabilistic assessment, especially when
assigning such probabilities may be considered controversial.

In the previous section, when defining our proposed unified framework, weights were
embedded in the definition of scenarios and, accordingly, the Chebyshev metric was
formulated with weights too. Now, in the LWR formulation there is no weight (at least
explicitly),and as such itis considered a “weight-agnostic” approach, as discussed. However,
not including weights does not mean that these are not implicit in the formulation and, in
fact, we argue that when noweights are assigned LWR (and in general any min-max approach)
is implicitly consideringall scenarios equiprobable.

To demonstrate this, take the simple following example where the Chebyshev distance metric
minimization problem is presented as an equivalent weighted version of LWR. The indexing
is coherentwith what previously presented.

min; max; (2 jregret; j) (10)

If the general formulationis specified fora case of equiprobable scenarios with a probability
(1), that is:

1 .
ﬂ.jz/lzﬁ V] (11)

Thenthe common weight or probability associated to all scenarios becomes a common factor
that can be brought outside the minimization function, where effectively “the decisions are
made”, yielding:

min; max; (A regret;;) = 2 - min; max; ( regret;;) (12)

This simple example thus proves that a LWR weighted formulation including equiprobable
scenarios is equivalentto a LWR formulation not considering probabilities. In this sense,
based on the unified framework presented, there are a few key considerations that can be
made, with relevantimplications on the suitability of differentapproaches:
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e A Least Worst Weighted Regret (LWWR) approach can be proposed as the generalised
version of LWR with scenario weights correspondingto the Chebyshev metric appliedto
the genericunified framework for multi-criteriaweighted assessment.

e Comparing a probabilistic assessment approach using different weights or probabilities
for the scenarios and a LWR approach with no weights (which we demonstrated
corresponds to having implicit equiprobable scenarios) become inconsistent, as the
problems that are beingsolved are now different.

e For consistency, the decision maker would need to include weights in the approaches
based on the Chebyshev metric too (LWR, MMC), since, when using scenarios,
probabilities are implicitly involved in all methodologies. This would lead to adopting
LWWR and min-max weighted cost (MMWC) approaches for generalised scenario-based
planning under uncertainty. Weighted scenarios for such approaches are for example
discussedin [29], [30], [32], [45], [46] .

e Differentmethodologies can now be consistently and seamlessly compared by assigning
relevant probability weights, and the implications of adopting one approach/metric or
another clearly assessed.

4.2.2. Expected costs and expected regrets provide the same results

When comparing probabilisticassessment with LWR, there are two distinct differences which
can be highlighted. On the one hand, they are using a different metric to calculate the
distance to the ideal solution, as previously explained (Manhattan and Chebyshey,
respectively). On the other hand, they are using different indicators, namely, probabilistic
assessment and more in general stochastic programming (typically) techniques use costs,
while LWR uses regrets. However, within the considered unified framework where scenario
probability weights are applied to all indicators, it is possible to show that the different
behaviour of the two approaches clearly comes from using different metric formulations
rather than different indicators. In fact, a stochastic programming approach (looking at
scenario-weighted expected values) would yield the same optimal solution when applied to
cost and regret. In other words, expected costs and expected regrets will provide the same
results.

To demonstrate this, let us consider that for a given scenario j the regret felt by a decision
maker’s choice overastrategy i can be defined as the difference in cost between that strategy
(¢;j) and the optimal strategy for that scenario (c;.’pt). Using this definition of weighted regrets
in a stochastic formulation that minimizes the expected regrets can be writtenas:

mini z /1] (Cij - C;.)pt ) (13)
J

By rearranging the terms in the previous expression, we get:

ming ( "2 e5— Y A" (14)
; j

. opt L L
Since C p , the best strategy for each scenario, is indeed a constant for each scenario, it can

be taken out of the minimization function.
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Therefore, the new minimization problem can be written as:

ming [ > A, |- ) 3¢ (15)
7 7

which correspond to minimisingthe expected costs.

As also discussedin [29], the previous expressions demonstrate that using (weighted) regrets
and costs in a probabilisticassessment context provides the same solution. This also confirms
the suitability and consistency of the proposed framework where probability weights are now
naturally part of scenario-based planning.

4.2.3. Implications in finding compromise solutions

As previously presented, compromise solutions are formally defined as feasible strategies
which cannot be improved in one scenario without losing somewhere else. As there is no
feasible solution that does best in all scenarios (it would be the ideal solution), compromise
solutions compose the natural set of candidates to considerfor the final decision. These are
also called the non-dominated set of solutions, or Pareto Optimal [42]. Effectively, in the
NOA’s context these are all the options or strategies that would have been pre-screened in
the technical analysis, before the permutations are assessed.

Compromise solutions are close to the ideal and show relatively good performance in all
scenarios, which is of course of great interest for decision makers. Therefore, the ability of
each methodology/metricin “exploring” the feasible set and selecting one of the compromise
solutionsiscritical.

As discussed in [29], [30], when a decision-making problem involves integer variables very
likely we will have a non-convex set of compromise solutions. Furthermore, methodologies
such as probabilistic assessment which are based on linear compositions across different
scenarios are only able to explore the convex hull of the whole set of possible solutions,
potentially missing some of those compromisesolutions in the non-convexspace which might
potentially lead to overall “better” decisions. In contrast, non-linearapproaches such as the
Chebyshev metric are in principle able to “invade” the non-convex space of the compromise
solution set. This feature may be of particularinterestinthe TEP problem in which investment
variables are intrinsically discrete. Figure 15 shows a simple example which depicts
compromise solutions, and how LWR can betterexplore the space of compromise solutions.
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Figure 15 Example of Compromise Solutions and Probabilistic Assessment/Stochastic Programming and LWR’s ability to

explore non-convex solutions from this set

4.2.4. Performance of indicators and metrics with spurious investment options

There is concern that some decision-makingapproaches (and LWR in particular) might be less
robust against quantitative errors in the reinforcement options, introduction of unsuitable
reinforcementoptions, etc. These investment options are sometimesreferred toas spurious.

From the definition of the Chebyshev metric, itis evident that when using the regretindicator
adding a new reinforcement strategy may change the relative solution ranking, thus
producing a new, different optimal decision. This is exemplified in the numerical case
presented below (itassumes equal probabilities forthe scenarios).

SCENARIO METRIC SCENARIO METRIC
N 2 Q g g Q
a) |STRAT 1 s S | & | & b) |STRAT s s2 S (& | &
a [ a3 Q o P
A X (A | A X | Agx, g s E’ AMoX (A | A X | A, g S E
COST A 05 100 50 05 85 |42.5| 925 65.6 50 REGRET A 05 0 0 0.5 S |25 125 25 25
B 110| 55 80 | 40 95 68.0 55 B 10 5 0 0 5 5.0 5
SCENARIO METRIC SCENARIO METRIC
g m Q g m )
c) |sTRAT 1 2 § 5§ 3 d) |STRAT $1 2 § 5§ 3
§ 3§ 3 § =z 3
A X (A A X | A g 3 3 A X (A | Ay X (A g 3 g
A 100 50 85 |42.5| 925 656 50 A 0 0 1S |75 &S 75 | 7.5
COST B 0.5 110/ 55 (0.5 80 | 40 95 68.0 55 REGRET B 05 10| 5 |05 10 5 10 71 5
C 500|250 70 | 35 | 285 252.4 250 C 400 | 200 0 0 | 200 200 200

Figure 16. Numerical example to exemplify the effect of adding new strategies for different indicators and metrics.

As it can be seenin the example, the addition of strategy C modifies the optimal decision
when using regret as the indicator and Chebyshev (or Euclidean) as the metric. In fact, when
considering only strategies A and B (see table b in Figure 16), strategy A is selected. Then, if
strategy C is added, the optimal decision switches to B. Hence, if strategy C were to be a
spurious one, thenthe decision might have lost robustness.

In the context of the NOA, however, it should be highlighted that only actual engineering
feasible and technically viable solutions are proposed as candidate strategies; hence, in
principle no project should be labelled as spurious as such?>. In this sense, the example

% |n other words, while the concept of “spurious solution” may have its mathematical relevance, from an
engineering perspective and inthis specificcontext it may be less appropriate, given that each and every solution
proposedintothe NOAwould havefirst been checked for technicalfeasibility.
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presented in Figure 16 should effectively be considered as two different planning exercises:
in the first one (tables a and b) there are only two candidate options and in the second one
(tables cand d) a new valid/feasible strategy has become availableand it hasto be considered
in the context of the assessment. The moment that a new strategy is available, the regrets
effectivelychange, because the decision makeris aware of a new option to face the uncertain
future and they will be conscious of the potential regret associated to using strategy Aor B in
the presence of strategy C.

If there were concerns regarding the quality of some of the optionsincludedin the different
strategies that are being assessed, for example because of various errors, it may not be the
role of the decision-making metric/indicator to “isolate” the spurious solutions: the
spuriousness of the different reinforcement options is something that would need to be
assessed before starting the assessment process and based on specific considerations.
Furthermore, if, notwithstanding the technical feasibility of a solution, for different reasons
there were still doubts about its relevance, sensitivity analyses should be run, for example,
assessing how the strategy ranking changes with and without consideration of this solution
“suspected” to be spurious. The toolsillustrated below may also support such analyses.
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4.3. lllustrative case study application

4.3.1. Case study description

In order to illustrate some of the concepts presentedin the previous sections and to expand
furtheron the NOA’s potential applications and implications of the proposed unified decision
making framework and relevant weighted decision metrics, we consider here as illustrative
example a simple TEP problem, namely, the 3-bus system (B1, B2, B3) whose topology and
parameters2® (in per unit, 1pu = 100MW) are presentedin Figure 17.

Pmax Cost
G3
Generator (pu) ($/MWh)
, G1 0.8 100
—i—— B3 G2 0.8 60
D3 G3 0.6 40
: Tmax
G1 G2 Line
: (pu)
. . L12 0.1
81 82 L13 0.1
4 b4
b1 D2 L32 0.1

Figure 17. 3-bus system and parameters of generators and lines.

The model to calculate the optimal investment simplistically considers the operation of one
day only. The uncertain variable is the demandin each node (D1in B1, D2in B2 and D3in B3),
whose hourly time series for three scenarios (high, medium and low demand) are depictedin
Figure 18.
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Figure 18. Hourly values of load for each demand in each of the three scenarios under consideration

For simplicity and given the illustrative nature of the example, the power flows in the
transmission lines are not subject to Kirchhoff voltage law (transport model only). There are
sixinvestment strategies that we consider, as presentedin Table 5. The investment cost INVC
is the same for all the options (that is, 100% expansion costs INVC for each line and 50%
expansion costs INVC/2 again for each line); the value for INVC was chosen aimingto create
interesting numerical outcomes, resultingin avalue of $1385 per line perday. The ID for each
strategy isrelevantto interpretingthe resultsin Figure 19 since the colours are normalised to
identify each strategy. Table 5 also shows the results for the deterministic assessment of
costs?’ for each strategy for each scenario, highlighting in bold the least cost strategies for
each scenario.

%6 The value of lost loadis conventionally set to $300/MWh.
27 The model corresponds to a linear problem minimising the costs of operation with nodal balances and
generationandtransmission limits for 24 time periods of 1 hour.
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Table 6 presentsthe results for the regrets calculated based on the results presented in Table
5. It also shows the maximum regrets for each strategy and the LWR for the unweighted case
is highlightedin bold.

Table 5. Investment strategies, investment costs and deterministic results

Cost by scenario [$]

Strategy . Investment Cost

ID Action [$/Line/day] High Medium Low

0 Not to expand 0 610602.54 426307.07 247709.93
1 Expand Line 1in 100% INVC 611987.72 426089.73 246452.39
2 Expand Line 2in 100% INVC 604949.16 424769.84 249082.63
3 Expand Line 3in 100% INVC 604949.16 426752.31 246882.11
4 Expand Line 1in 50% INVC/2 611295.13 425793.43 246804.09
5 Expand Line 2in 50% INVC/2 606601.92 424473.54 248390.04
6 Expand Line 3in 50% INVC/2 606601.92 426059.72 246846.25

Table 6. Regrets calculated based on deterministic results

Strategy Regrets [$]

Action Max Regret [$]

ID High Medium Low

0 Not to expand 5653.39 1833.53 1257.54 5653.39
1 Expand Line 1in 100% 7038.56 1616.2 0 7038.56
2 Expand Line 2in 100% 0 296.31 2630.23 2630.23
3 Expand Line 3in 100% 0 2278.77 429.71 2278.77
4 Expand Line 1in 50% 6345.97 1319.89 351.69 6345.97
5 ExpandLine 2in50% 1652.76 0 1937.65 1937.65
6 Expand Line 3in 50% 1652.76 1586.19 393.85 1652.76

4.3.2. Decision making under different metrics and decision-stability regions

The nextstep involves using the previous results to determine the optimal strategy based on
the weighted metrics presentedin earlier sections of this document. In particular, in this case
study we analyse the effect of using the following metrics:

e Manhattan metric (probabilistic assessment/stochastic programming): L (y;) =
Zﬂy|3’ij|
2
e Euclideandistance: L,(y;) = 2/2?’(}11-]-)
e Chebyshevmetric(LWWR): Lo, (y;) = max(lyijD j=1.,N

Using the numerical results presented beforeitis possible to build these metrics for different
weights A; for the scenarios. The resulting heatmaps presented in Figure 19 use the y-axisto
represent the weight of scenario LOW (A;) and the x-axis for the weight of scenario HIGH
(Ay); consideringthat there are only three scenarios, the weight of scenario MEDIUM (A,,) is
implicit in each chart by considering that A, =1 — (A, + Ay). By analyzing a range of
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weights, itis possible to determine the strategy that the different approaches would select
for each weight combination, which then can be plotted by means of the associated ID. This
graphical approach alsoresultsin a clearvisualisation of the scenario weight ranges for which
same decisionsare recommended by different methodologies.
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Figure 19. Optimal strategies for weighted scenarios and different metrics

As can be seen in Figure 19a, the probabilistic approach identifies only five out of six
investment strategies; furthermore, the resulting areas are convex (the line formed by any
two points in the area is contained in the area itself) and the transition from a strategy to
another across scenario weights is smooth. As soon as a non-linear metricis used, strategy 4
appears tooin the optimal solution set, as can be seenforthe Euclidean distance ( Figure 19b)
and LWWR (Figure 19c). These findings are all in line with the theoretical considerations
discussed above.

There is a further relevant consideration that can be derived from Figure 19: by superposing
the charts for the probabilisticapproach (Figure 19a) and the one associated to LWWR (Figure
19c¢) it is possible to find what we could define as decision-stability regions, namely those
regions characterised by a combination of weights within which the selection of the optimal
strategy would be the same regardless of the metric used to calculate it.
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As each decision-stability regionis defined forarange of weights foreach scenario, this allows
us to potentially selectastrategy from the stable regions whichis independent of the metric
used and can also cope with “uncertainty” in the determination of the probability of each
scenario. For example, if the LOW and HIGH scenarios were to be considered low probability
scenarios (~10% each), the strategy selected would be number 5 regardless of the metric
used; this would be true even if the scenario HIGH would change its weight between 0 and
15%, scenario LOW in the 0 to 35% range and the scenario MEDIUM between 50 and 100%.
Decision-stability regions can thus be a powerful tool to test the robustness of given solutions
to uncertain scenario probability assignment or to the plausibility of given scenarios.

Another interesting aspect worth highlighting from the results presented in Figure 19 is that
there exists a relationship between the location of the reinforcement and the geometry of
the areas. In fact, strategies 1 and 4 correspond to the expansion of line 1, strategies2 and 5
to line 2, and strategies 3 and 6 to line 3. It can be seen that lines 2 and 3 dominate the
resulting strategies forall the metrics, and that the total correspondingarea falls within clear
triangular sections of the heatmaps (a), (b) and (c) in Figure 19. This hints that important
physical insights could be gained by deploying such a tool.

It is also interesting to point out that, as discussed above, the “classical” (apparently
“unweighted”) LWR approach would correspond to an equal weight combination for the
three scenarios, and such LWR (that is, a LWWR with equal probability weights) could be
compared with the results from probabilisticassessmentwiththe same 33.3%-33.3%-33.3%
combination of weights. It is clear from visual inspection that in this specific case study the
classical approach does not yield decision-stable solutions across different metrics, hinting
that furtheranalysis may be worthwhile. Thisis discussed further below.

Itis important to highlightthat for applications with more than three scenarios, for example
the four scenarios considered in the NOA process, the same graphical representation could
still be obtained by varying the probability weights of two scenarios, for example the ones
that are expectedto perform “worst” and “best”, and by assuming that the other two (more
“central”) scenarios are equally probable. Also, a four-scenario case can be represented
through a 3D heatmap with specificvalues assigned on each scenario probability.

4.3.3. Costand regret analysis of the solutions from different metrics

Figure 20 illustrates the distribution of expected costs (a)-(b) and maximum regrets (c)-(d)
within each of the areas for the selected strategies using the probabilistic and LWWR
approaches. To understand how the regrets push the boundaries of the areas to become what
they are in Figure 19c, Figure 20 shows that the optimal areas found by the LWWR metric
naturally reduce the maximum regrets that can be experienced compared to the probabilistic
case in Figure 20c. In fact, the probabilisticmetricis applied to minimizethe weighted average
costs across scenarios, hence resulting in strategy spaces that have been optimised without
considering the corresponding regrets. The differences in regrets between the probabilistic
and LWR metrics can be seen in Figure 21a; the values presented there are the results of
subtracting the values Figure 20d from the values Figure 20c. Furthermore, Figure 21b shows
the differences resulting from subtracting the expected costs presented in Figure 20a from
Figure 20b. It is clearfrom the positive differences seen within the LWWR decision boundaries
in Figure 21b that they would change to match the probabilistic decision boundaries if the
probabilisticmetricwas used to make the decisions.
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In general, by performing this kind of expected costs and expected regrets analysis for
different methodologies all the implications of using different approaches, risk-aversion
degrees, and scenario weights may be clearly assessed, potentially leadingto developingan
enhanced decision-making framework where the performance of the proposed investment
solutions are much more transparent in terms of including costs and risks and robust to
differentuncertainties.
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Figure 20. Expected cost and maximum weighted regret for the optimal decisions in the Probabilisticand LWWR cases
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5. General feedback on the NOA process and initial recommendations

for improvement

5.1. General feedback

Based on the reviews and study performed, there are few key points that it is possible to
highlight asfeedback for the current NOA process and considerations fora more probabilistic
approach:
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Planningunder uncertainty is typically dealt with by scenario-based approaches in most
countries. National Grid ESO’s approach seems therefore in line with what is done
elsewhere.

Most countries adopt a (very) limited number of scenarios or sensitivities around central
scenarios in their planning methodologies, with no probability weights explicitly
associated with the considered scenarios. Infact, scenarios seemto be typically analysed
independently and then planning optionsare chosen based on specificrules to make an
overall decision. National Grid ESO’s NOA methodology based on LWR that integrates
decisions across several scenarios thus seems to represent the state of the art of planning
under uncertainty.

Based on our proposed unified view that brings together apparently different decision-
making approaches, the current LWR approach does already have (implicit equal)
probability weights and is therefore not probability-agnostic. The current NOA
methodology could also readily and seamlessly be adapted to incorporate scenario
probability weights, by adopting a more general Least Worst Weighted Regret (LWWR)
approach.

Comparing a probabilisticassessment approach, which aims to minimise expected costs
(or, equivalently, expected regrets) across scenarios using specific weights or
probabilities,and a LWR approach with no weights (that is, with implicitly equiprobable
scenarios) may be inconsistent, as the problems that they would be solving would be
effectively different.

LWR and its weighted counterpart, LWWR, allow exploring more investment solutions
than a probabilisticassessment, whichis naturally more appealing.

In comparison with a probabilistic assessment, LWR (or the more general LWWR) is
intrinsically “lessrisky”, asit explicitly adopts arisk measure (the regrets themselves)and
minimisesit. Effectively this meansthat LWWR tends to opt for investments that perform
satisfactorily in all scenarios, reducing the potential economic impacts that an
unfavourable scenario might generate once the decision has been made. Conversely, a
probabilistic assessment, which does not take into account any risk measure (and is
indeed risk-neutral), could lead to greater economic impacts if unfavourable scenarios
were to take place.

As an interesting feature in practical applications, including potentiallyin the NOA, by a
suitable use of scenario probability weights LWWR effectively allows modul ation of the
decision maker’s attitude to risk aversion. In fact, assigning relatively smaller weightsto
extreme scenarios that might tend to drive investment would correspond, in practical
terms, to decreasingthe risk-aversion level.

Therefore, from a point of view of a decision maker that is risk-averse, due to their
intrinsic approach to risk LWR and, if using probabilistic weights, LWWR may be



considered more adequate for investment analyses such as inthe NOA. Furthermore, as
aforementioned, the decision maker’srisk attitude can also be potentially modulated by
using weightsinthe LWWR approach.

5.2. Initial recommendations

In terms of possible improvementsto the current NOA process and more in general aspects
that might be worth exploring, we would like to recommend the following:

e Additional operational snapshots could be included in the technical analysis besides the
current winter peak assessment. Thisis in light of increasing operational complexity and
uncertainty that might drive worst case flows across boundaries at different times of the
year. Similarly, inclusion of new operational characteristics and constraints, such as
associated with low-inertia conditions, could be desirable.

e The use of LWR or similar approaches could be adopted to inform the optimality of
interconnector assessmentacross scenarios too. Thiswould allow a more consistentand
integrated approach between selection of (internal) boundary reinforcement and
optimal level of interconnectors.

e A Least Worst Weighted Regret (LWWR) approach, in which scenarios have explicitly
assigned weights could be proposed as the generalised version of LWR (where
equiprobable scenarios are implicitly assumed).

e The implicit equiprobable scenario representation of the current LWR approach can be
interpreted as a special case of the more general LWWR whereby it is intrinsically
believed thatall current scenarios are similarly plausible and likely to happen28. However,
if there are reasons to considerasymmetry in the likelihood of the considered scenarios,
consideration might be giventoa more detailed assessment that might explore different
probability weights.

e While we are aware that the selection of probability weightsto assign to scenarios may
be difficultand controversial, our proposed unified framework provides a consistent and
comprehensive view that could seamlessly compare and assess the outcomes of
(apparently) different methodologies (i.e., probabilistic, LWWR and min-max weighted
cost), with scenario weights being considered as a natural component. This could
eventually provide more transparency and robustness to the investment process and the
selected options, thus resultingin reduced risk of spurious solutions and reduced risk of
decisions being driven more by specific scenarios than methodologies, and in general
enhanced hedge against potential uncertainty. Furthermore, by modulating the value of
the scenario weights, the impact of different degrees of risk-aversion may also be
explored.

e Such analysiscould also be supported by visual tools that could identify decision-stability
regions with win-win solutions from different methodologies and suggest what solutions
might require furtheranalysis, for example in terms of expected costs and regrets.

e Irrespective of the formal use of probability weights, multi-parametric scenario
sensitivity studies could be performed to provide insights into the benefits and risks of

28 Equiprobability of scenarios corresponds to Laplace’s “principle of insufficient reason”. This, however,
generally requires absence of lack of symmetryin the considered scenarios. Once again, if such symmetry may
be presentdueto differentviews on future scenarios, the use probability weights is advocated in the classical
theory.
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different proposed solutions under different possible future occurrences, with for
example expected costs and expected regrets (a measure of risk) analysis for different
methodologies able to clearly assess all the implications of using different approaches,
risk-aversion degrees, and scenario weights.

5.3. Next steps

Nextstepsin thisstudy include: lookingintotechniquesto embed more flexibilityinthe NOA
methodology (e.g., more explicit approaches that resemble Real Options) starting from and
possibly improvingthe current use of annual rolling horizon; lookinginto consideringthe use
of different risk measures (for example, based on utility theory and CVaR); studying in more
detail the role and impact of extreme scenarios and alternative solutions on the proposed
decision making approaches, possibly with real case studies; and attempting to bring closer
technical and economic aspects of the NOA and looking for overall improvement of the
mechanics of the whole methodology in its interaction between technical and commercial
studies.
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