

System Operability Framework (SOF) 2014

Post consultation activities

Ben Marshall Transmission Network Services GCRP- 21st January 2015

Agenda

- Why do we need a SOF?
- How SOF works and example of results
 - Challenges and Opportunities
- Summary of Industry Consultation
- Current activities on SOF topics
- Next steps and how SOF 2015 will be developed

Our System is Changing...

And the Impact?

System Inertia

MVAr Demand

What was SOF? Recap

Example - System Inertia

System Inertia – RoCoF

df/dt > 1Hz/s less than 1% of time in all scenarios

Example - System Inertia & Frequency Containment (1)

RoCoF (Hz/s)	Slow Progression	Gone Green	Inertia GW.s	Action Time (to reach 49.2 Hz)	Response Rate (MW/s)
0.125**	2013/14	2013/14	360	9	185
0.2	2019/20	2018/19	225	4	400
0.22	2022/23	2019/20	205	3.4	489
0.25	2023/24	2020/21	180	2.4	679
0.3	2024/25	2021/22	150	1.2	1148

Three times
greater than
current system
capability

*Figures assume a 2s delay between detection/response activation time

Example - System Inertia & Frequency Containment (2)

nationalgrid

	Solution	Cost (2020 Gone Green)
	Constrain generators	Extra £600m
Conventional Services	Constrain largest infeed/outfeed	Extra £130m-£270m (depending on when the large infeeds are connected)
	Carry larger volumes of response	Extra £210m

New Services **Enhanced Frequency Control** (Fast Response)

Solution

Low Load Operation of Thermal Plants

Synchronous Compensator

System Inertia – Frequency Containment (3) – Innovation

Need for fast response was identified as part of SOF

 Enhanced Frequency Control Capability (EFCC) will demonstrate the effectiveness of such service

Summary of Industry Consultation

- Generally positive (very good engagement)
- SOF Topics
 - Number comments indicated the impact of change at the distribution level needs to be better articulated, i.e. DSR, EVs, etc.

SOF Solutions

- Better balance between market based products (i.e. wherever the technology is already capable), and new requirements
- Solutions in long terms which require contract at early stages (i.e. synchronous compensator)
- Solutions capable of providing number of services (i.e. Interconnectors, Storage)

SOF Engagement

Strong desire to be involved at different stages of development of SOF, making it a GB Operability Framework

Key areas and we are doing about it

Internal Activities

Joint activities / working groups

Existing Engagement Forums

SOF Engagement

Generation

Operational Forum - Grid Code Review Panel -Compliance Meetings

New services

- New generation technologies Generation withstand capability
- Modelling issues
- Installations worldwide
- Compliance issues
- Grid services to the generators
- Joint innovation projects

Transmission

SQSS - STC - JPC- Grid Code Review Panel -Liaison Meetings

Investment optimisation for design and

operation

- New transmission technologies
- Operability and regional strategies
- SQSS and Code development
- Modelling issues and data exchange
- Joint innovation projects

Distribution

ENA Grid Code &
Distribution Code Review
Panel – T&D Liaison

Investment

design and

operation New demand side technologies (i.e.

optimisation for

- heat pumps, DSR, storage)
- Operability and regional strategies
- SQSS, Grid Code and Distribution Code development
- Modelling issues and data exchange
- Joint innovation projects

Supply Side

Operational Forum - Liaison Meetings

- Demand Side Services
- Code development
- Operability of new technologies
- Modelling techniques (i.e. modelling DSR effects)
- Joint innovation projects

SOF 2015 looking at whole system

(bearing in mind many SOF 2014 topics are the whole system issue, i.e. Frequency)

a theme for future SOF?

DNO's Engagement

Timeline for Development of SOF

Key priorities for SOF 2015 - Summary

- Stating how we responded to industry's comments on the consultation
- Better articulation of across Transmission and Distribution operability issues
 - Highlighting where the change is coming from, and what's the effect on
- Priority table (operability issues and opportunities)
- Update on innovation activities and what's needed
- Engagement strategy

System Operability Framework

Thank you for your attention

For more information please email:

box.transmission.SOF@nationalgrid.com

